
Algorithmic Game Theory Due: April 6th, 2016

Homework 1

Lecturer: Michal Feldman Assistant: Israela Solomon

Question 1:

This question concerns a game between two players: Alice who has a finite strategy set S
and Bob who has a finite strategy set T . We will denote Alice’s utility when she plays s and
Bob plays t by a(s, t) and Bob’s utility by b(s, t). We start with the following definitions of
strict dominance:

• s is purely-dominated if for some s′ ∈ S we have that for all t ∈ T : a(s, t) < a(s′, t).

• s is mixed-dominated if for some x ∈ ∆(S) we have that for all t ∈ T : a(s, t) < a(x, t).

• s is never-best-reply if for every t ∈ T there exists s′ ∈ S so that: a(s, t) < a(s′, t).

• Similar, dual, notions apply for the strategies of Bob.

1. Prove: s is purely-dominated ⇒ s is mixed-dominated ⇒ s is never-best-reply.

2. Give examples showing that the opposite implications are false.

3. Show that all three notions can be computed in polynomial time.

4. We could have also defined s to be a never-best-reply-to-mixed if for every y ∈ ∆(T )
there exists s′ ∈ S so that: a(s, y) < a(s′, y). Prove that this is equivalent to s being
mixed- dominated. (Hint: define a zero-sum game using Alice’s utility.)

Question 2:

1. Show that the following problem can be solved in polynomial time: Given a two-
player game, a subset of the rows S and a subset of the columns T , find a mixed-Nash
equilibrium where the support of the row strategy is exactly S and the support of the
column strategy exactly T , or state that such an equilibrium does not exists.

2. Show that there exists an exponential time algorithm for computing a mixed-Nash
equilibrium in two-player games.
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Question 3:

This question deals with the following bandwidth selection game: There are n radio users,
where each user i needs to transmit qi bits of information. There are two available radio
bands, and each radio user can choose which band to use. The radios that use a certain
band b share the bandwidth of the band, and all of them finish together at time. The two
bands are equivalent for all purposes and the only thing that the users want is to finish as
early as possible.

1. Formalize this as a game.

2. Show that the allocation of users to bands that minimizes the makespan (the load on
the most loaded band) is a pure Nash equilibrium.

3. Give an example where there is a pure equilibrium that does not minimize the
makespan.

4. Prove that if we start from an arbitrary partition of the users to the two bands and
then repeat the following step sufficiently many times (but only finitely many times),
we reach a pure Nash equilibrium. Step: take an arbitrary user that can improve his
utility by moving to the other band and move him there. reaches equilibrium.

5. Show that finding the allocation that minimizes the makespan is NP-complete (hint:
reduction from partition.)

6. Give a polynomial time algorithm to find a pure Nash equilibrium.

7. Assume now that, as opposed to all previous parts of the question, each user may
partition his radio transmission between the two bands (e.g. sending qi/3 in band 1
and 2qi/3 in band 2). Find strategies for the users that (1) are in equilibrium (2)
together minimize the makespan (3) each user can decide what to do without looking
at the others loads.

Question 4:

Consider n machines and m selfish jobs (the players). Each job j has a processing time
pj and a set Sj of machines on which it can be scheduled (i.e., Sj is the strategy space
of player j). Once all jobs have chosen machines, the jobs on each machine are processed
serially from shortest to longest. (you can assume that the pj ’s are distinct). For example,
if jobs with processing times 1,3, and 5 are schedules on a common machine, then they will
complete at times 1, 4, and 9, respectively. Assume that players choose machines in order
to minimize their completion times.

Consider the following scheduling algorithm: (1) Sort all the jobs in order from smallest
to largest; (2) Schedule the jobs one-at-a-time, assigning a job j to the machine of Sj with
minimum load so far (breaking ties arbitrarily). Prove that the pure Nash equilibria of
the scheduling game are precisely the possible outputs of this scheduling algorithm (with
the different equilibria arising from different ways of breaking ties). [hint: if you were the
smallest player, how is your personal cost affected by the others’ decisions?].
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