
Algorithmic Game Theory Due: May 18th, 2016

Homework 2

Lecturer: Michal Feldman Assistant: Israela Solomon

1 Auctions

Problem 1: Consider a second price auction with n bidders and suppose a subset S of
the bidders decide to collude, meaning that they submit false bids in a coordinated way to
maximize the sum of their payoffs. Establish necessary and sufficient conditions on the set
S (in terms of the private valuations of the bidders) such that the bidders of S can increase
their collective payoff via non-truthful bidding.

Problem 2: Consider a combinatorial auction with a set M of m goods and n bidders.
Assume that the valuation function of every bidder vi(·) is normalized, monotone, and
subadditive (i.e., for every disjoint sets T1, T2, vi(T1) + vi(T2) ≥ vi(T1 ∪ T2)).

Consider the winner determination problem, and for now, ignore payments and truthfulness,
rather consider only poly-time social welfare maximization. Given M and v1, . . . , vn, call
the winner determination problem lopsided if there is an optimal allocation of goods in
which at least half of the total SW of the allocation is due to players that were allocated
a bundle with at least

√
m goods. (i.e., if

∑
i∈A vi(T

∗
i ) ≥ 1

2

∑n
i=1 vi(T

∗
i ), where T ∗ is the

optimal allocation and A is the subset of bidders i with |T ∗i | ≥
√
m.)

1. Show that in a lopsided problem, there is an allocation that gives all the goods to a
single player and achieves an Ω(1/

√
m) fraction of the maximum-possible SW.

2. Show that in a problem that is not lopsided, there is an allocation that gives at most
one good to each player and achieves an Ω(1/

√
m) fraction of the maximum-possible

SW. [hint: use subadditivity.]

3. Give a poly-time O(
√
m)-approximate winner determination algorithm for subadditive

valuations. [hint: make use of a graph matching algorithm].

4. Give a poly-time O(
√
m)-approximate, truthful combinatorial auction for subadditive

valuations.
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2 Sponsored Search

Problem 3: Consider the following extension of the sponsored search setting. Each bidder
i now has a publicly known quality βi (in addition to a private valuation vi per click). As
usual, each slot j has a click-through-rate (CTR) αj , and α1 ≥ α2 . . . ≥ αk. We assume
that if bidder i is placed in slot j, its probability of a click is βiαj – thus, bidder i derives
value viβiαj from this outcome.

Describe the surplus-maximizing allocation rule in this generalized sponsored search setting.
Argue that this rule is monotone. Give an explicit formula for the per-click payment of each
bidder that extends this allocation rule to a DSIC mechanism.

3 VCG

Problem 4: Consider a combinatorial auction in which a bidder can submit multiple bids
under different names, unbeknownst to the mechanism. The allocation and payment of a
bidder is the union and sum of the allocations and payments, respectively assigned to all of
its pseudonyms. Show that the following is possible: a bidder in a combinatorial auction can
earn higher utility from the VCG mechanism by submitting multiple bids than by bidding
truthfully. Can this ever happen in the Vickrey auction? Give a brief explanation.

Problem 5:

(a) A single seller sells k identical goods. Each one of n bidders is willing to buy a single
good, and has a private valuation vi for the good (or for any bundle including that one
good).

i. Describe the allocation and the payments of the VCG mechanism with Clarcke
Pivot rule.

ii. Design an algorithm that finds the optimal allocation (without enumerating over
all possibilities).

(b) Prove that no bidder can increase his utility in the VCG mechanism by submitting
another false bid under different name (as in question 4).

4 Smooth Games

Problem 6: Prove that if s is an ε-approximate Nash equilibrium of a (λ, µ)-smooth cost-
minimization game – meaning that Ci(s) ≤ (1+ε)Ci(s

′
i, s−i) for every player i and deviation

s′i ∈ Ai – with ε < 1
µ − 1 then the cost of s is at most λ(1+ε)

1−µ(1+ε) times that of an optimal
outcome.
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