
Algorithmic Game Theory March 2, 2016

Lecture 1

Lecturer: Michal Feldman Scribe: Jacob Komarovski, Chen Amar, Itay Polack

1 Administration

Instructor: Michal Feldman

TA: Israela Solomon, israela5@mail.tau.ac.il

Website: agttau-2016.wikidot.com

1.1 Course Requirements

Homework Assignment

• 30% of final grade.

• 3 assignments submitted in pairs

• Each question will be given a grade between 0 and 3.

Scribe Notes

• Scribe notes: 10% of final grade.

• Should be submitted in latex (the template can be found on the course site).

Project

• 60% of final grade. Will be submitted in groups.

• Can be either a research project, or a survey project.

• Research project is the preferred option. The students will be required to show a good
understanding of the papers and articles, of the subjects covered in class and maybe
even publish their research.
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• A survey project: the students will be required to pick a few papers, read them and
write a comprehensive sum-up. They need to present some added value, compare
between different modules/methods.

• There will be a few milestones during the semester and the students will have the
opportunity to meet with other staff members related to the subject of the project.

2 Algorithmic Game Theory - Introduction

The rise of algorithmic game theory is due to the rise of the internet. This is a mixture of
economics and computer science.
Game theory tries to analyze situations from real life and involving people using strategies
in order to maximize their own benefit.

Example:IBM is trying to implement an algorithm that will work correctly and will not
take into effect human manipulations. Let’s assume that an algorithm exists for regulating
and controlling network traffic (TCP for example). When the network gets congested, TCP
limits the rate. This protocol is implemented on all computers but each computer has its
own priorities (someone may want to send a lot of data at a specific moment) which can
lead to a situation where a computer won’t follow the instructions of the protocol because
it has its own incentives.

This area of studies tries to analyze and understand a given situation and turns to
the field of economics where these questions have already been asked and researched for a
long time. We will try and bring this expertise into the field of computer science.
Game theory is different from the decision theory. In decision theory, if we look at the
question ”should I take an umbrella?” we need to decide if we take the umbrella or not.
There is an element (nature) that effects our benefit.
In game theory, there is extra layer - probability. Let’s say that we need to get from Tel
Aviv to Jerusalem. We are not the only ones trying to do it because there are a lot more
people using this route so our decision is not the only thing effecting us. If everyone chose
route A and we choose route B this will be good for us but not for long, because everyone
else will figure it out and change course.
We will want to get to a ”clean” model that tries to predict the eventual outcome. There
are games without any knowledge, little knowledge or ones that have all the information
we need.
There also exists a reverse impact. The field of economics is effected by computer science
because of growing amounts of options for social interactions, the emergence of electronic
trading websites such as EBay where there is a big selection of products and large
competition. There are dependencies between situations (IPhone + IPhone earphones),
interchangeable situations (IPhone 5 vs IPhone 6) etc.
In essence, this is a field of planning mechanisms –We will want to understand in advance
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how to plan the game (mechanism) in such a way that even if the players do what’s best
for them we will still maximize our own benefit (utility). Add to this the computational
factor and ask ourselves how we can best achieve our goal function. In this way we limit
ourselves to the algorithms we want and allow us to achieve our goal.

This course has two parts:

1) Analysis of existing systems and price of anarchy. Price of anarchy is the ratio between
an unorganized and organized system.

Example: Braess’s Paradox (based on real life events)

Figure 1: Roads

Each car needs to get from A to B. It needs to choose a route via C or D. Each road (edge)
has a weight which is the time it takes to cross the road with a congestion of x , c(x).

CAC(x)=x, CAD(x)=1, CCB(x)=1, CDB(x)=x

If the congestion is 1
100 then it takes hour

100 time to cross the road.

The utility function is the average between the travels times and we will try to minimize it.
In order to minimize the utility function we will send half of the cars via C and half via D.
Definition: equilibrium —A stable state where there is no benefit in changing strategy. We
will notice that the above solution is an equilibrium.

Now let’s alter the graph:
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Figure 2: Roads

Where :

CAC(x)=x, CAD(x)=1, CCB(x)=1, CDB(x)=x, CCD(x)=0

Now, every car going from A to C, C to D, D to B can shorten the time. The equilibrium
is reached if all cars use the route ACDB which takes 2 hours (not shorter than the route
ACB for example).

We have added another road and didn’t shorten our travel time –This is Brauss’s Paradox.

Another interesting view point for the paradox is through a physical model, demonstrated
by a system of springs and weights (real experiments can be watched in Youtube).

2) Planning mechanism —How to produce a mechanism (game) that is the best for everyone.
A lot of times there is a conflict between the planner of the game and the players.

3 Basics

3.1 Definitions

For start, we will take a few assumptions:

1. Games are not cooperative: each player tries to maximize their own benefit with
no regard to other players’ payoff.

2. Players have full information - they know all available strategies and payoffs of all
players.

3. Strategic game - we ignore the time dimension: all players act simultaneously, and
do not change their behavior between the turns.
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A game of n players is defined by the following:

1. Set of strategies S = {S1, S2, . . . , Sn}.

2. Utility functions. For each player i, let ui : S1 × S2 × . . . × Sn → R be their utility
function.

Definition 1 Ssi∈Si = (s1, . . . , sn) is a strategy profile, representing the strategies of all
players. We will use the S−i = (s1, . . . , si−1, si+1, . . . , sn) notation to represent the strategies
of all players except player i.

Definition 2 si ∈ Si is a best response to a strategy profile s−i ∈ S−i if it achieves the
best payoff to player i, given the other players’ strategies are s−i. Formally, strategy profile
si ∈ Si is best response to s−i ∈ S−i if ∀s′i∈Si

ui(si, s−i) ≥ ui(s
′
i, s−i).

Definition 3 Strategy si dominates strategy s′i if si achieves better or equal payoff for all
strategies played by the other players. Formally, ∀s−i∈S−iui(si, s−i) ≥ ui(s

′
i, s−i).

Definition 4 si is a dominating strategy for player i if it dominates all other strategies
for this player.

Definition 5 si is dominated if there exists a strategy s′i for player i that dominates it.

3.2 Nash Equilibrium in Pure Strategies

Definition 6 S = (s1, . . . , sn) is called Nash Equilibrium if for each player i, si is the best
response for s−i.

We will see examples for a few 2 players games. The games are represented by a matrix,
where each cell ai,j is a vector with the utilities each player gets, given player 1 (”rows”)
employs strategy si, and player 2 (”columns”) employs strategy sj .

Rock-paper-scissors

In this popular game, rock beats scissors but lose to paper; Paper beats rock but lose to
scissors; Scissors beats paper but loses to rock. When both players play the same strategy,
it’s a tie. We will describe this game using the table below.

Is there a dominating strategy for this game? The answer is no: each strategy only works
against a single other strategy. There is no single strategy that guaranteed to give better
results than all other strategies.
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Table 1: Rock-Paper-Scissors matrix
S R P S

R (0, 0) (−1, 1) (1,−1)
P (1,−1) (0, 0) (−1, 1)
S (−1, 1) (1,−1) (0, 0)

The Prisoner Dilemma

Each player can choose to either cooperate (C) or defect (D). For each strategy set, the
payoffs are as described in table below.

Table 2: Prisoner dilemma matrix
S C D

C (3, 3) (0, 5)
D (5, 0) (1, 1)

In this famous game, if both players cooperate, they both get a high award. If both defect,
they are both penalized with low reward. If one player choose to cooperate while the other
choose to defect, the defecting player is rewarded and the cooperating player is severely
penalized.

In this case, there is a dominating strategy: D. Both sides are getting smaller payoff when
taking this strategy, but choosing to cooperate (C) is an unstable status, because the other
player will choose D in order to improve their payoff.

This dilemma fits other situations as well, such as - keeping clean environment. Everyone
wants to enjoy clean environment (the results of everyone picking the cooperation strategy),
but on the other hand - does not want to put the effort to keep clean (let someone else
care). The end result - nobody is keeping clean, and everyone suffers dirty environment.
Such situation is called ”tragedy of the commons”.

Battle of the Sexes

Each player can choose between going to the opera (O), or to a boxing match (B). Going
together to either of the options benefits both players (with a small additional payoff to the
player whose preference was chosen), while going to different events is a lose-lose situation.

Table 3: Battle of the Sexes matrix
S B O

B (3, 2) (0, 0)
O (0, 0) (2, 3)

For this game, a best-response strategy exists for each possible strategy, but there is no
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single dominating strategy.

Nash equilibrium exists, but has multiple sets of strategies: {< B,B >,< O,O >}.

3.3 Nash Equilibrium in Mixed Strategies

Observation 7 Through the above examples we reach two important observations:

1. Nash equilibrium does not always exists (as in rock-paper-scissors).

2. Nash equilibrium is not necessarily unique (as in the battle of the sexes).

We will define mixed strategies.

Definition 8 Let ∆(s) = {x1, x2, . . . , x|s||∀jxj ≥ 0,
∑

xj = 1} be a set of probabilities over
the set of strategies S. xi = {xi1, xi2, . . . , xi|s|} ∈ ∆(S) is a mixed strategy for player i,

where xij is the probability that player i picks strategy sj.

Following this new definition, we will have to re-define the utility function as well:

Definition 9 Utility function with mixed strategies is an expected value over the the
different probabilities: ui(x

1, ..., xn) = Esj∼xj [ui(s1, . . . , sn)].

Notice a strong assumption we take here: the players only care about expected value,
completely ignoring risk. This assumption is not valid in many real world situation, but we
will assume it for now.

With the new definitions, we can now rethink the paper-rock-scissors game we discussed
before. We can now achieve Nash equilibrium using the following strategy set (same for
all players): {13 ,

1
3 ,

1
3}. This is an equilibrium, as the expected value for each player is 0,

and changing probabilities can only reduce this expected value. For example, if some player
gives higher probability to the ”rock” option, the other player can increase the probability
of the ”paper” strategy and achieve a higher expected value.

Definition 10 Nash equilibrium in mixed strategies is a vector (x1, . . . , xn) such that
for all i, xi is the best response for x−i.

Notice that in an equilibrium, the expected value for each strategies must be the same,
otherwise the player can increase the probability of the strategy that gives them a better
payoff.

Definition 11 In a pure strategy, one strategy has probability of 1, and the rest of strate-
gies 0.
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Example 1 We will calculate NE for the ”battle of the sexes” game. Assume that the mixed
strategy for player 1 is (p, 1 − p). Since the expected value must be equal for all strategies,
the following equation must hold: 3p = 2(1 − p) = 2 − 2p → 5p = 2 → p = 2

5 . We found
out that the mixed strategy for player 1 is (25 ,

3
5). In the same way, the mixed strategy for

player 2 is (35 ,
2
5).

Theorem 12 For any finite game (meaning: finite number of players and finite number of
strategies) in mixed strategies, Nash equilibrium exists.

The proof is based on another theorem (that we will not prove here), named Brouwer
Fixed-Point Theorem.

Theorem 13 Brouwer Fixed-Point Theorem: Let C be a closed bounded convex set in
Rt, and let f : C → C be a continuous function, then there exists a point x ∈ C such that
f(x) = x.

Example 2 Let t = 1, C = [0, 1], and f : [0, 1] → [0, 1] - a continuous function. We will
define g(x) = f(x) − x. The following holds: g(0) = f(0) ≥ 0, g(1) = f(1) − 1 ≤ 0. From
continuity of g and the intermediate value theorem, there must exists some x′ ∈ C such that
g(x′) = 0. For this x′, g(x′) = f(x′)− x′ = 0→ f(x′) = x′.

Proof for Nash Equilibrium Theorem

We will define a function f : {∆(s1)× . . .×∆(sn)} → {∆(s1)× . . .×∆(sn)}. We will denote
the best response for x−j as BR(x−j).

According to the fixed-point theorem, the function we defined f : (x1, . . . , xn) →
BR(x−1), . . . , BR(x−n) must have at least one point X ′ = (x′1, . . . , x′n) where f(X ′) = X ′,
and that is exactly an equilibrium.

However, f is neither continuous nor injective (there could be multiple best responses for a
strategy) - we cannot use the fixed-point theorem and therefore this proof is incorrect.

We will denote xji to be the probability of a pure strategy j in distribution xi. We will

define Cj
i = ui(j, x

−i) − ui(xi, x
−i) as the difference between the utility of player i if they

choose the pure strategy j instead of choosing the strategy xi. Let Cj+
i = max(Cj

i , 0).

Now define: x̂ji =
xj
i+Cj+

i

1+
∑
j
Cj+

i

(the denominator normalizes this expression to be a proper

distribution). Let f(x1, . . . , xn) = (x̂i, . . . , x̂n). We assume that the Cj
i is continuous,

therefore f is continuous as well. According to the fixed-point theorem, there exist a fixed
point x such that ∀ixi = x̂i, which also implies ∀jxji = x̂ji .
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To complete the proof, we must show that for all i, j, Cj
i ≤ 0 on that fixed-point. Otherwise,

it means player i can improve their payoff by shifting to a pure strategy. If the condition is
met, the strategy cannot be improved and therefore equilibrium is achieved.

Assume by contradiction the existence of i, j such that Cj
i > 0. It means that x̂ji =

xj
i+Cj+

i

1+
∑
j
Cj+

i

> 0, because both xji + Cj+
i > 0 and 1 +

∑
j
Cj+
i > 0.

We assume xji is a fixed point, so x̂ji = xji , implying that xji > 0.

For all i,
∑
j
Cj
i x

j
i = 0 (proof left to the reader), therefore there must exist some j′ such

that Cj′

i < 0, xj
′

i > 0 to balance the sum. By definition, Cj+
i = 0. From the fixed-point

assumption: xj
′

i = x̂j
′

i =
xj
i+0

1+
∑
j
Cj+

i

< xj
′

i . We reached a contradiction. �

We proved that NE in mixed strategies exists for any finite game, but can we actually
compute it? In the general case, finding NE is considered a computationally hard problem
- even with 2 players games! However, for certain cases, we can find it efficiently.

3.4 Zero Sum Games with 2 Players

Definition 14 A zero sum game is a game where the sum of the payoffs for all players is
always 0.

For example, rock-paper-scissors is a 2-players zero-sum game. When describing a zero-sum
game with 2 players, a utility vector is not required - we can simply write the utility for
player 1, and the utility for player 2 is its negative.

An example game:

Table 4: Zero-sum 2 players example game
S L M R

U 0 20 100
D 10 1 200

When player 1 (”rows”) takes strategy i (U or D), and player 2 (”columns”) takes strategy
j (L, M , or R), the payoff for player 1 is aij , and −aij for player 2.

We we now assume player 1 plays first, and player 2 second. Player 1 will always play D,
otherwise player 2 can play L and achieve a non-negative payoff. Player 2 will choose M , in
order to achieve the best possible payoff in this situation. Eventually, the payoff for player
1 would be 1, and −1 for player 2.

In general, player 1 wants to choose the strategy in which player 2 can inflict as little damage
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as possible, meaning r = arg max
i
{min

j
aij}. Following the same rationale, if player 2 plays

first, they’ll choose r = arg min
i
{max iaij}.

Lemma 15 Minimax theorem: max
i

min
j

aij ≤ min
j

max
i

aij

Immediate implication: with mixed strategies, the order of the turns does not matter - the
players will take the same strategy sets.
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