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1 Introduction

Up till this point in the course we worked in the full-information framework, which assumes that
each player knows the true valuations of all the other players. In this lecture we present the
Bayesian framework which assumes that each players knows a distribution over the valuations of
the other players, but does not know the realization of that distribution.

2 The Bayesian model

2.1 Definitions

Each player i has:

• A set Ti of potential types called the type space, from which his actual type ti ∈ Ti is taken.
The type of a player represents his preferences in the game. In the case of auctions, each
player’s type is his valuations over the items.
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• A set Ai of potential actions for the player called the action space. In the case of auctions,
the actions are the bids the players make.

• A strategy function σi : Ti → Ai that determines what action a player will take given his
type.

2.2 Assumptions

Each player i knows:

• His own type ti.

• A prior distribution F over the types of all the players t = (t1, ..., tn). Hence, each player i
has a posterior distribution F−i|ti over the types of the other players.

For example, consider the following distribution over the types of two players:

Pr t1 t2
1
3 1 2
1
3 1 3
1
3 2 5

Assume that t1 = 1 and t2 = 2. Then player 1 knows that his own type is 1, and therefore
his posterior distribution over t2 is P (t2 = 2|t1 = 1) = P (t2 = 3|t1 = 1) = 1

2 .

As a special case, if F = F1 × · · · × Fn is a product distribution such that ti ∼ Fi then
F−i|ti = F−i and so each player learns nothing about the other players’ types from observing
his own.

• In a Bayesian equilibrium (to be defined immediately), each player knows the full strategy
profile σ = (σ1, ..., σn). This induces a distribution σ−i(t−i|ti) over the actions of the other
players.

3 Bayesian Nash Equilibrium

Definition. A Bayesian Nash Equilibrium (BNE) is a strategy profile
σ = (σ1, ..., σn) such that for every player i and every type ti ∈ Ti, the strategy σi maximizes the
expected utility of player i given ti, i.e.:

Et−i∼F−i|ti

[
ui(σi(ti), σ−i(t−i))

]
3.1 Example: a BNE for a first-price auction

Consider a first-price auction with two players and a single item in which the players’ valuations
v1, v2 are i.i.d U([0, 1]).

Claim: σ1 = v1
2 , σ2 = v2

2 is a BNE.

Note: For concreteness, when discussing auctions we talk about player valuations vi rather than
player types ti, and about player bids bi rather than actions ai.
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Proof: For player 1, v1 is known and v2 ∼ U([0, 1]). Because σ2 = v2
2 , it follows that b2 ∼ U([0, 12 ]).

Hence the expected utility of player 1 is:

Ev2
[
u1(b1)

]
= 0 · P (player 1 looses) + (v1 − b1) · P (player 1 wins) =

= (v1 − b1) · Pv2(b1 >
v2
2

) = (v1 − b1) ·min{2b1, 1}

By taking the derivative, we can see that
v1
2

= argmaxb1Ev2
[
u1(b1)

]
Thus, player 1 maximizes his expected utility by bidding b1 = v1

2 , and a similar reasoning shows
that the best response for player 2 is to bid b2 = v2

2 . �

Note: The seller’s expected revenue in this auction would be 1
3 , because E

[
max{v1, v2}

]
= 2

3 ,
and the revenue is half that amount. Moreover, the seller’s expected revenue in a second-price
auction with the same two players would be 1

3 as well, because E
[

min{v1, v2}
]

= 1
3 , the bids are

honest, and the revenue is the second-price. This is an example of a general result (that follows
from Myerson’s theorem).

4 Price of anarchy for BNE

In the previous lecture, we saw that in a second-price auction with submodular valuations, the PoA
for NE that satisfy no-over-bidding (NOB) is at most 2.

4.1 Reminder of the proof method

Let b be a NOB NE. We define hypothetical deviations (b∗1, ..., b
∗
n) (using the additive functions

a∗i ). Then:

SW(b) =

n∑
i=1

vi(si(b)) ≥
n∑
i=1

ui(b)
(∗)
≥

n∑
i=1

ui(b
∗
i , b−i)

(∗∗)
≥ OPT−

n∑
i=1

∑
j∈si(b)

bij
(?)

≥ OPT−
n∑
i=1

vi(si(b))

And so

SW(b) ≥ 1

2
OPT

where vi, ui and si denote the valuation, utility and allocation of player i (respectively), (∗)
follows from b being a NE, (∗∗) follows from the choice of b∗ and (?) follows from NOB. �

We would like to generalize this result to BNE.

Definition. Let F be a prior distribution over the valuations of the players. The Bayesian Price of Anarchy
(BPoA) with respect to F is

BPoA(F ) =
Ev∼F

[
OPT (v)

]
infσ∈BNE Ev∼F

[
SW(σ(v))

]
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4.2 Main result

From here on we will assume that the prior F is a product distribution F = F1 × · · · × Fn such
that vi ∼ Fi for all i.

Theorem. For every G a bayesian simultaneous second price auction, if F the prior-distribution
of G is a product distribution, and if the support of F is contained in the set of all XOS functions,
then for every bayesian Nash Equilibrium σ = (σ1, ...., σn) satisfying NOB it’s true that:

EV∼ F [SW (σ(V )] ≥ 1
2EV∼ F [OPT (V )]

Remark. Simply put, it means that under the condition that our prior distribution is a product
distribution, we get the same result as in a full information environment, which is an upper bound
to the PoA of simultaneous second price auctions with XOS valuation functions.

Remark. It’s clear that we can’t expect to get a better result, since Full Information Envi-
ronment can be seen a special case of Bayesian Environment where the distribution is degenrate,
and we have seen that the same bound on PoA in full information environment is tight.

Proof: Let σ be some BNE. Let i be some player. We will define a deviation for i from the
Equilibrium σ in the following way: We sample W−i ∼ F−i, now player i has a full valuation
(vi,W−i) since he obviously knows his own valuation. Given this complete valuation (vi,W−i) we
can define σ∗i the deviation:

Let’s mark S∗i the package i gets under the optimal allocation, according to the sampled valu-
ation (vi,W−i). σ

∗
i (vi) is a bidding vector b∗i = (b∗i,1, ..., b

∗
i,m) defined by:

• if j ∈ S∗i then b∗i,j = a∗i (j) where a∗i is an additive function derived from the fact that the
valuation is XOS. (See the same proof for Full Information environment for explanation)

• if j 6∈ S∗i then b∗i,j = 0

We mark σ∗i (vi) = b∗i (vi,W−i) since it’s dependent on the sample W. Since σ is a BNE, player i
can’t benefit from any deviation, including σ∗i :

EV−i∼ F−i [ui(σ(V )] ≥ EV−i∼ F−i [ui(σ
∗
i (Vi), σ−i(V−i)]

From the way we defined the deviation we get:

EV−i∼ F−i [ui(σ
∗
i (vi), σ−i(v−i)] = EV−i∼ F−i;W−i∼ F [ui(b

∗
i (vi,W−i), σ−i(v−i)]

All of this analysis was done in the point of view of a single player: i. But vi is also chosen at
random by F in the point of view of the mechanisem designer. We can take expactancy over vi as
well. Since F is a product distribution we get:

EV∼ F [ui(σ(V )] ≥ EV∼ F ;W∼ F [ui(b
∗
i (W ), σ−i(V−i)]

Using the linearity of expectation we will sum this inequallity over all players to get:

EV∼ F [
∑n

i=1 ui(σ(V )] ≥ EV∼ F ;W∼ F [
∑n

i=1 ui(b
∗
i (W ), σ−i(V−i)]
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Since b∗i (W ), the deviation bid of i, was crafted in a very specific way, we know that:∑n
i=1 ui(b

∗
i (W ), σ−i(V−i)) ≥ OPT (W )−

∑n
i=1

∑
j∈Si

σi(Vi)j

Where Si is the package i would get from the allocation of the simultaneous second price mechanism,
if everyone played according to the N.E σ and if the valuations were all according to V (See the
same proof for full information environment for reference). Finally:

EV∼ F [
∑n

i=1 ui(σ(V )] ≥ EV∼ F ;W∼ F [OPT (W )−
∑n

i=1

∑
j∈Si

σi(Vi)j ]
EV∼ F [

∑n
i=1 ui(σ(V )] ≥ EW∼ F [OPT (W )]−

∑n
i=1 EV∼ F [

∑
j∈Si

σi(Vi)j ]

Since σ the Nash Equilibrium upholds no-overbiding we know that:

Vi(Si) ≥
∑

j∈Si
σi(Vi)j

Moreover, since all the prices are non-negative, it’s clear that

EV∼ F [SW (σ(V )] ≥ EV∼ F [
∑n

i=1 ui(σ(V )]

And so all togther we get:

EV∼ F [SW (σ(V )] ≥ EW∼ F [OPT (W )]−
∑n

i=1 EV∼ F [Vi(Si)]
EV∼ F [SW (σ(V )] ≥ EW∼ F [OPT (W )]− EV∼ F [

∑n
i=1 Vi(Si)]

2EV∼ F [SW (σ(V )] ≥ EW∼ F [OPT (W )]

The left hand side is twice the expected SW of some BNE, and right hand side is the expected
value of the optimal allocation. Since σ is an arbitrary BNE, we get our bound for BPoA. �

Remark. In the full-information framework we proved that if for every profile v there exist bids
b∗1, ..., b

∗
n such that:

n∑
i=1

ui(b
∗
i , b−i) ≥ λ ∗OPT (v)− µ ∗

n∑
i=1

pi(b)

Then:

PoA ≤ λ
1+µ

Using the ”sample trick” of the last theorem’s proof, we get the same result for BNE

5 PoA in single-item first price auctions

Our objective is getting an upper bound for the price of anarchy in first price auctions.
In this lesson we cover a bound for pure N.E.

Remark. In a single-item second price auction, for every valuation profile v,

there exist bids b∗1, ..., b
∗
n such that:

n∑
i=1

ui(b
∗
i , b−i) ≥

n
max
i=1

vi −
n

max
i=1

bi

We would like to get a similar connection in first price auctions in order to get our bound.

Lemma. In a first price auction, if the highest bidder bids b∗i = vi
2 ,

and then rest of the bidders bid b∗i = 0 then:
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(*)
n∑
i=1

ui(b
∗
i , b−i) ≥

1

2

n
max
i=1

vi −
n

max
i=1

bi

Proof: We will divide our proof into two cases:

• If
1

2

n
max
i=1

vi −
n

max
i=1

bi < 0, then since for every player i, ui(b
∗
i , b−i) ≥ 0, we get that (*) holds.

• Otherwise
1

2

n
max
i=1

vi >
n

max
i=1

bi,

let i∗ = argmax vi, i
∗ wins the auction, yielding utility

1

2
vi∗ ≥

1

2
vi∗ −

n
max
i=1

bi.

This verifies (*).

�

Corollary. Every pure Nash equilibrium of a first-price single item auction has SW of at least
1

2
of OPT.

Remark. It can be shown that each pure NE of a first price auction has optimal SW.

Proof of corollary: Let vi(b) be the SW contributed by player i in the outcome of the pro-
file b, and let pi(b) be i’s payment and ui(b) = vi(b)− pi(b) his utility.
Then the following holds:

n∑
i=1

vi(b) =
n∑
i=1

ui(b) +
n∑
i=1

pi(b) ≥
n∑
i=1

ui(b
∗
i , b−i) + max

i
bi ≥ 1

2 max
i
vi −max

i
bi + max

i
bi =

1

2
max
i
vi

�
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