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1 Introduction

Up till this point in the course we worked in the full-information framework, which assumes that
each player knows the true valuations of all the other players. In this lecture we present the
Bayesian framework which assumes that each players knows a distribution over the valuations of
the other players, but does not know the realization of that distribution.

2 The Bayesian model

2.1 Definitions
Each player ¢ has:

o A set T; of potential types called the type space, from which his actual type t; € T; is taken.
The type of a player represents his preferences in the game. In the case of auctions, each
player’s type is his valuations over the items.



e A set A; of potential actions for the player called the action space. In the case of auctions,
the actions are the bids the players make.

e A strategy function o; : T; — A; that determines what action a player will take given his

type.

2.2 Assumptions
Each player ¢ knows:
e His own type t;.

e A prior distribution F' over the types of all the players t = (¢1,...,t,). Hence, each player ¢
has a posterior distribution F_;|t; over the types of the other players.

For example, consider the following distribution over the types of two players:

Pr tl 752
1
? 112
3 113
T 1275

Assume that t; = 1 and to = 2. Then player 1 knows that his own type is 1, and therefore
his posterior distribution over t; is P(ty = 2|ty = 1) = P(ts = 3|1 = 1) = 3.

As a special case, if F' = Fy X - -+ X F, is a product distribution such that ¢; ~ F; then
F_;|t; = F_; and so each player learns nothing about the other players’ types from observing
his own.

e In a Bayesian equilibrium (to be defined immediately), each player knows the full strategy
profile o = (01, ...,05,). This induces a distribution o_;(t_;|¢;) over the actions of the other
players.

3 Bayesian Nash Equilibrium

Definition. A Bayesian Nash Equilibrium (BNE) is a strategy profile
o = (o1, ...,0p) such that for every player i and every type t; € T;, the strategy o; maximizes the
expected utility of player i given t;, i.e.:

By ot i [us(oi(ts), o—i(t-0))]

3.1 Example: a BNE for a first-price auction
Consider a first-price auction with two players and a single item in which the players’ valuations

v1,vg are 1.i.d U([0,1]).

Claim: o1 = 4, 0o = % is a BNE.

Note: For concreteness, when discussing auctions we talk about player valuations v; rather than
player types t;, and about player bids b; rather than actions a;.



Proof: For player 1, v1 is known and vz ~ U([0,1]). Because o2 = %, it follows that ba ~ U([0, %])
Hence the expected utility of player 1 is:

By, [u1(b1)] = 0- P(player 1 looses) + (v1 — by) - P(player 1 wins) =
v :
= (vy — by) - P, (by > 52) = (v1 — by) - min{2by, 1}
By taking the derivative, we can see that
v
51 = argmaxy, E,, [ul(bl)]

Thus, player 1 maximizes his expected utility by bidding b, =
that the best response for player 2 is to bid by = %. B

V1

5, and a similar reasoning shows

Note: The seller’s expected revenue in this auction would be %, because E[max{vl,vg}] = %,
and the revenue is half that amount. Moreover, the seller’s expected revenue in a second-price
auction with the same two players would be % as well, because E[min{vl,vg}] = %, the bids are
honest, and the revenue is the second-price. This is an example of a general result (that follows

from Myerson’s theorem).

4 Price of anarchy for BNE

In the previous lecture, we saw that in a second-price auction with submodular valuations, the PoA
for NE that satisfy no-over-bidding (NOB) is at most 2.

4.1 Reminder of the proof method

Let b be a NOB NE. We define hypothetical deviations (b3, ..., b)) (using the additive functions
a’). Then:

n

n (5 & (+%) " ®) -
SW(b) =D vi(si(b) =Y ui(d) = > ui(bf,b_g) > OPT=Y Y by > OPT—) w;(s;(b))
=1 =1 =1

i=1 i=1 jesi(b)

And so 1
SW(b) > §OPT

where v;, u; and s; denote the valuation, utility and allocation of player i (respectively), (x)
follows from b being a NE, (xx) follows from the choice of b* and (x) follows from NOB. B

We would like to generalize this result to BNE.

Definition. Let F' be a prior distribution over the valuations of the players. The Bayesian Price of Anarchy
(BPoA) with respect to F' is

_ Eyr [OPT(v)]
BPoA(F) = inf,epng Evnr [SW(U(U))}
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4.2 Main result

From here on we will assume that the prior F' is a product distribution F' = F} X - - - X F, such
that v; ~ F; for all 7.

Theorem. For every G a bayesian simultaneous second price auction, if F the prior-distribution
of G is a product distribution, and if the support of F is contained in the set of all XOS functions,
then for every bayesian Nash Equilibrium o = (o7, ...., 0,,) satisfying NOB it’s true that:

Ev~ 7[SW(o(V)] > 3Ev~ £[OPT(V)]

Remark. Simply put, it means that under the condition that our prior distribution is a product
distribution, we get the same result as in a full information environment, which is an upper bound
to the PoA of simultaneous second price auctions with XOS valuation functions.

Remark. It’s clear that we can’t expect to get a better result, since Full Information Envi-
ronment can be seen a special case of Bayesian Environment where the distribution is degenrate,
and we have seen that the same bound on PoA in full information environment is tight.

Proof: Let o be some BNE. Let ¢ be some player. We will define a deviation for ¢ from the
Equilibrium o in the following way: We sample W_; ~ F_;, now player ¢ has a full valuation
(vi, W_;) since he obviously knows his own valuation. Given this complete valuation (v;, W_;) we
can define o} the deviation:

Let’s mark S} the package i gets under the optimal allocation, according to the sampled valu-
ation (v;, W_;). o} (v;) is a bidding vector b = (b}, ...,b},,) defined by:

10 Oim

o if j € 57 then b} ; = aj(j) where a] is an additive function derived from the fact that the
valuation is XOS. (See the same proof for Full Information environment for explanation)

o if j & S; then b}, =0

We mark o} (v;) = b} (v;, W_;) since it’s dependent on the sample W. Since o is a BNE, player ¢
can’t benefit from any deviation, including o;':

Eyv_in 7oiui(o(V)] 2 Bv_in 7 [ui(0f (Vi), 0-i(Voi)]
From the way we defined the deviation we get:
By v 7o [ui(of (vi), 0—i(v-i)] = Bv_in 7w Flua(b] (v, Wei), 0i(v-4)]

All of this analysis was done in the point of view of a single player: i. But v; is also chosen at
random by F in the point of view of the mechanisem designer. We can take expactancy over v; as
well. Since F is a product distribution we get:

By rlui(o(V)] =2 Bve mwn Flui(07 (W), 0-i(V_i)]

Using the linearity of expectation we will sum this inequallity over all players to get:

Eve 721 wi(o(V)] 2 Bve mwe D200 wi(bf (W), 0-i(V_y)]
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Since b} (W), the deviation bid of i, was crafted in a very specific way, we know that:

Doy wi(bf (W), 0-4(Voy)) > OPT(W) = 370, > s, 0i(Vi);

Where S; is the package i would get from the allocation of the simultaneous second price mechanism,
if everyone played according to the N.E ¢ and if the valuations were all according to V' (See the
same proof for full information environment for reference). Finally:

Eve 701 wi(0(V)] 2 Bve mwe s[OPT(W) =370, 30 cs, 0i(Vi);]
Ev~ 7[> iy ui(o(V)] > Ewn z[OPT(W)] = 31 Eve 73 cs, 0i(Vi)j]

Since o the Nash Equilibrium upholds no-overbiding we know that:
Vi) = S oi(Vi);
Moreover, since all the prices are non-negative, it’s clear that
Eve #[SW(o(V)] 2 By #3205, wi(o (V)]
And so all togther we get:

Eve 7[SW(o(V)] 2 Ew~ s[OPT(W)] =3 L, By~ #[Vi(Si)]
Eve 7[SW(o(V)] 2 Bw~ 7[OPT(W)] = By 7[00 Vi(Si)]
2By~ 7[SW(o(V)] =2 Ew~ £[OPT(W)]

The left hand side is twice the expected SW of some BNE, and right hand side is the expected

value of the optimal allocation. Since o is an arbitrary BNE, we get our bound for BPoA. B

Remark. In the full-information framework we proved that if for every profile v there exist bids
1,...,br such that:

n n
S ui(bf i) = Ax OPT(v) — x - pi(h)
i=1 i=1
Then:
PoA < 1+M
Using the ”sample trick” of the last theorem’s proof, we get the same result for BNE

5 PoA in single-item first price auctions

Our objective is getting an upper bound for the price of anarchy in first price auctions.
In this lesson we cover a bound for pure N.E.

Remark. In a single-item second price auction, for every valuation profile v,
there exist bids b7, ..., b}, such that: Z wi(bF,b—;) > malx v — malxb
We would like to get a similar connectlon in first price auctions in order to get our bound.

Lemma. In a first price auction, if the highest bidder bids b} = 3,
and then rest of the bidders bid b; = 0 then:



n 1
(*) >0 ui(b;,b—i) > 3 max v; — max b;
=1 =1 =1

Proof: We will divide our proof into two cases:

1
o If 5 m%f{ v — m%lx b; < 0, then since for every player ¢, u;(b},b_;) > 0, we get that (*) holds.
1= 1=
N n
e Otherwise — maxwv; > maxb;,
2 =1 i=1 ) )
let " = argmaz v;, ©* wins the auction, yielding utility Ui > St~ m%f{ b;.
1=
This verifies (*).

1
Corollary. Every pure Nash equilibrium of a first-price single item auction has SW of at least 3
of OPT.

Remark. It can be shown that each pure NE of a first price auction has optimal SW.

Proof of corollary: Let v;(b) be the SW contributed by player i in the outcome of the pro-
file b, and let p;(b) be i’s payment and u;(b) = v;(b) — p;(b) his utility.
Then the following holds:

n n n n 1
Yovi(d) = >0 wi(b) + > pi(b) > > wi(bf,b_;) + maxb; > %maxvi — max b; + maxb; = 5 maxv;
. i=1 i—1 1 K2 K3 1 K3

i=1 =1 7
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