Lecture 10: May 25, 2016
Lecturer: Michal Feldman
Scribes: Ynon Flum, Eyal Golombek, Yuval Lewi Uri Meir, Idan Rejwan ${ }^{\circ} \delta$ Jonathan Shafer

Contents

1 Introduction 1
2 The Bayesian model 1
2.1 Definitions 1
2.2 Assumptions 2
3 Bayesian Nash Equilibrium 2
3.1 Example: a BNE for a first-price auction 2
4 Price of anarchy for BNE 3
4.1 Reminder of the proof method 3
4.2 Main result 4
5 PoA in single-item first price auctions 5

1 Introduction

Up till this point in the course we worked in the full-information framework, which assumes that each player knows the true valuations of all the other players. In this lecture we present the Bayesian framework which assumes that each players knows a distribution over the valuations of the other players, but does not know the realization of that distribution.

2 The Bayesian model

2.1 Definitions

Each player i has:

- A set T_{i} of potential types called the type space, from which his actual type $t_{i} \in T_{i}$ is taken. The type of a player represents his preferences in the game. In the case of auctions, each player's type is his valuations over the items.
- A set A_{i} of potential actions for the player called the action space. In the case of auctions, the actions are the bids the players make.
- A strategy function $\sigma_{i}: T_{i} \rightarrow A_{i}$ that determines what action a player will take given his type.

2.2 Assumptions

Each player i knows:

- His own type t_{i}.
- A prior distribution F over the types of all the players $t=\left(t_{1}, \ldots, t_{n}\right)$. Hence, each player i has a posterior distribution $F_{-i} \mid t_{i}$ over the types of the other players.
For example, consider the following distribution over the types of two players:

Pr	t_{1}	t_{2}
$\frac{1}{3}$	1	2
$\frac{1}{3}$	1	3
$\frac{1}{3}$	2	5

Assume that $t_{1}=1$ and $t_{2}=2$. Then player 1 knows that his own type is 1 , and therefore his posterior distribution over t_{2} is $P\left(t_{2}=2 \mid t_{1}=1\right)=P\left(t_{2}=3 \mid t_{1}=1\right)=\frac{1}{2}$.
As a special case, if $F=F_{1} \times \cdots \times F_{n}$ is a product distribution such that $t_{i} \sim F_{i}$ then $F_{-i} \mid t_{i}=F_{-i}$ and so each player learns nothing about the other players' types from observing his own.

- In a Bayesian equilibrium (to be defined immediately), each player knows the full strategy profile $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$. This induces a distribution $\sigma_{-i}\left(t_{-i} \mid t_{i}\right)$ over the actions of the other players.

3 Bayesian Nash Equilibrium

Definition. A Bayesian Nash Equilibrium (BNE) is a strategy profile
$\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right) \overline{\text { such that for every player } i}$ and every type $t_{i} \in T_{i}$, the strategy σ_{i} maximizes the expected utility of player i given t_{i}, i.e.:

$$
\mathbb{E}_{t_{-i} \sim F_{-i} \mid t_{i}}\left[u_{i}\left(\sigma_{i}\left(t_{i}\right), \sigma_{-i}\left(t_{-i}\right)\right)\right]
$$

3.1 Example: a BNE for a first-price auction

Consider a first-price auction with two players and a single item in which the players' valuations v_{1}, v_{2} are i.i.d $U([0,1])$.

Claim: $\sigma_{1}=\frac{v_{1}}{2}, \sigma_{2}=\frac{v_{2}}{2}$ is a BNE.
Note: For concreteness, when discussing auctions we talk about player valuations v_{i} rather than player types t_{i}, and about player bids b_{i} rather than actions a_{i}.

Proof: For player 1, v_{1} is known and $v_{2} \sim U([0,1])$. Because $\sigma_{2}=\frac{v_{2}}{2}$, it follows that $b_{2} \sim U\left(\left[0, \frac{1}{2}\right]\right)$. Hence the expected utility of player 1 is:

$$
\begin{gathered}
\mathbb{E}_{v_{2}}\left[u_{1}\left(b_{1}\right)\right]=0 \cdot P(\text { player } 1 \text { looses })+\left(v_{1}-b_{1}\right) \cdot P(\text { player } 1 \text { wins })= \\
=\left(v_{1}-b_{1}\right) \cdot P_{v_{2}}\left(b_{1}>\frac{v_{2}}{2}\right)=\left(v_{1}-b_{1}\right) \cdot \min \left\{2 b_{1}, 1\right\}
\end{gathered}
$$

By taking the derivative, we can see that

$$
\frac{v_{1}}{2}=\operatorname{argmax}_{b_{1}} \mathbb{E}_{v_{2}}\left[u_{1}\left(b_{1}\right)\right]
$$

Thus, player 1 maximizes his expected utility by bidding $b_{1}=\frac{v_{1}}{2}$, and a similar reasoning shows that the best response for player 2 is to bid $b_{2}=\frac{v_{2}}{2}$.

Note: The seller's expected revenue in this auction would be $\frac{1}{3}$, because $\mathbb{E}\left[\max \left\{v_{1}, v_{2}\right\}\right]=\frac{2}{3}$, and the revenue is half that amount. Moreover, the seller's expected revenue in a second-price auction with the same two players would be $\frac{1}{3}$ as well, because $\mathbb{E}\left[\min \left\{v_{1}, v_{2}\right\}\right]=\frac{1}{3}$, the bids are honest, and the revenue is the second-price. This is an example of a general result (that follows from Myerson's theorem).

4 Price of anarchy for BNE

In the previous lecture, we saw that in a second-price auction with submodular valuations, the PoA for NE that satisfy no-over-bidding (NOB) is at most 2 .

4.1 Reminder of the proof method

Let b be a NOB NE. We define hypothetical deviations $\left(b_{1}^{*}, \ldots, b_{n}^{*}\right)$ (using the additive functions $\left.a_{i}^{*}\right)$. Then:

$$
\mathrm{SW}(b)=\sum_{i=1}^{n} v_{i}\left(s_{i}(b)\right) \geq \sum_{i=1}^{n} u_{i}(b) \stackrel{(*)}{\geq} \sum_{i=1}^{n} u_{i}\left(b_{i}^{*}, b_{-i}\right) \stackrel{(* *)}{\geq} \mathrm{OPT}-\sum_{i=1}^{n} \sum_{j \in s_{i}(b)} b_{i j} \stackrel{(\star)}{\geq} \mathrm{OPT}-\sum_{i=1}^{n} v_{i}\left(s_{i}(b)\right)
$$

And so

$$
\mathrm{SW}(b) \geq \frac{1}{2} \mathrm{OPT}
$$

where v_{i}, u_{i} and s_{i} denote the valuation, utility and allocation of player i (respectively), (*) follows from b being a NE, $(* *)$ follows from the choice of b^{*} and (\star) follows from NOB.

We would like to generalize this result to BNE.
Definition. Let F be a prior distribution over the valuations of the players. The Bayesian Price of Anarchy (BPoA) with respect to F is

$$
\operatorname{BPoA}(F)=\frac{\mathbb{E}_{v \sim F}[O P T(v)]}{\inf _{\sigma \in \operatorname{BNE}} \mathbb{E}_{v \sim F}[\operatorname{SW}(\sigma(v))]}
$$

4.2 Main result

From here on we will assume that the prior F is a product distribution $F=F_{1} \times \cdots \times F_{n}$ such that $v_{i} \sim F_{i}$ for all i.

Theorem. For every G a bayesian simultaneous second price auction, if \mathcal{F} the prior-distribution of G is a product distribution, and if the support of \mathcal{F} is contained in the set of all XOS functions, then for every bayesian Nash Equilibrium $\sigma=\left(\sigma_{1}, \ldots ., \sigma_{n}\right)$ satisfying NOB it's true that:

$$
\mathbb{E}_{V \sim \mathcal{F}}\left[S W(\sigma(V)] \geq \frac{1}{2} \mathbb{E}_{V \sim \mathcal{F}}[O P T(V)]\right.
$$

Remark. Simply put, it means that under the condition that our prior distribution is a product distribution, we get the same result as in a full information environment, which is an upper bound to the PoA of simultaneous second price auctions with XOS valuation functions.

Remark. It's clear that we can't expect to get a better result, since Full Information Environment can be seen a special case of Bayesian Environment where the distribution is degenrate, and we have seen that the same bound on PoA in full information environment is tight.

Proof: Let σ be some BNE. Let i be some player. We will define a deviation for i from the Equilibrium σ in the following way: We sample $W_{-i} \sim \mathcal{F}_{-i}$, now player i has a full valuation (v_{i}, W_{-i}) since he obviously knows his own valuation. Given this complete valuation (v_{i}, W_{-i}) we can define σ_{i}^{*} the deviation:

Let's mark S_{i}^{*} the package i gets under the optimal allocation, according to the sampled valuation $\left(v_{i}, W_{-i}\right) . \sigma_{i}^{*}\left(v_{i}\right)$ is a bidding vector $b_{i}^{*}=\left(b_{i, 1}^{*}, \ldots, b_{i, m}^{*}\right)$ defined by:

- if $j \in S_{i}^{*}$ then $b_{i, j}^{*}=a_{i}^{*}(j)$ where a_{i}^{*} is an additive function derived from the fact that the valuation is XOS. (See the same proof for Full Information environment for explanation)
- if $j \notin S_{i}^{*}$ then $b_{i, j}^{*}=0$

We mark $\sigma_{i}^{*}\left(v_{i}\right)=b_{i}^{*}\left(v_{i}, W_{-i}\right)$ since it's dependent on the sample W. Since σ is a BNE, player i can't benefit from any deviation, including σ_{i}^{*} :

$$
\mathbb{E}_{V_{-i} \sim \mathcal{F}_{-i}}\left[u_{i}(\sigma(V)] \geq \mathbb{E}_{V_{-i} \sim \mathcal{F}_{-i}}\left[u_{i}\left(\sigma_{i}^{*}\left(V_{i}\right), \sigma_{-i}\left(V_{-i}\right)\right]\right.\right.
$$

From the way we defined the deviation we get:

$$
\mathbb{E}_{V_{-i} \sim \mathcal{F}_{-i}}\left[u_{i}\left(\sigma_{i}^{*}\left(v_{i}\right), \sigma_{-i}\left(v_{-i}\right)\right]=\mathbb{E}_{V_{-i} \sim \mathcal{F}_{-i} ; W_{-i} \sim \mathcal{F}}\left[u_{i}\left(b_{i}^{*}\left(v_{i}, W_{-i}\right), \sigma_{-i}\left(v_{-i}\right)\right]\right.\right.
$$

All of this analysis was done in the point of view of a single player: i. But v_{i} is also chosen at random by \mathcal{F} in the point of view of the mechanisem designer. We can take expactancy over v_{i} as well. Since \mathcal{F} is a product distribution we get:

$$
\mathbb{E}_{V \sim \mathcal{F}}\left[u_{i}(\sigma(V)] \geq \mathbb{E}_{V \sim \mathcal{F} ; W \sim \mathcal{F}}\left[u_{i}\left(b_{i}^{*}(W), \sigma_{-i}\left(V_{-i}\right)\right]\right.\right.
$$

Using the linearity of expectation we will sum this inequallity over all players to get:

$$
\mathbb{E}_{V \sim \mathcal{F}}\left[\sum_{i=1}^{n} u_{i}(\sigma(V)] \geq \mathbb{E}_{V \sim \mathcal{F} ; W \sim \mathcal{F}}\left[\sum_{i=1}^{n} u_{i}\left(b_{i}^{*}(W), \sigma_{-i}\left(V_{-i}\right)\right]\right.\right.
$$

Since $b_{i}^{*}(W)$, the deviation bid of i, was crafted in a very specific way, we know that:

$$
\sum_{i=1}^{n} u_{i}\left(b_{i}^{*}(W), \sigma_{-i}\left(V_{-i}\right)\right) \geq O P T(W)-\sum_{i=1}^{n} \sum_{j \in S_{i}} \sigma_{i}\left(V_{i}\right)_{j}
$$

Where S_{i} is the package i would get from the allocation of the simultaneous second price mechanism, if everyone played according to the N.E σ and if the valuations were all according to V (See the same proof for full information environment for reference). Finally:

$$
\begin{gathered}
\mathbb{E}_{V \sim \mathcal{F}}\left[\sum_{i=1}^{n} u_{i}(\sigma(V)] \geq \mathbb{E}_{V \sim \mathcal{F} ; W \sim \mathcal{F}}\left[O P T(W)-\sum_{i=1}^{n} \sum_{j \in S_{i}} \sigma_{i}\left(V_{i}\right)_{j}\right]\right. \\
\mathbb{E}_{V \sim \mathcal{F}}\left[\sum_{i=1}^{n} u_{i}(\sigma(V)] \geq \mathbb{E}_{W \sim \mathcal{F}}[\operatorname{OPT}(W)]-\sum_{i=1}^{n} \mathbb{E}_{V \sim \mathcal{F}}\left[\sum_{j \in S_{i}} \sigma_{i}\left(V_{i}\right)_{j}\right]\right.
\end{gathered}
$$

Since σ the Nash Equilibrium upholds no-overbiding we know that:

$$
V_{i}\left(S_{i}\right) \geq \sum_{j \in S_{i}} \sigma_{i}\left(V_{i}\right)_{j}
$$

Moreover, since all the prices are non-negative, it's clear that

$$
\mathbb{E}_{V \sim \mathcal{F}}\left[S W(\sigma(V)] \geq \mathbb{E}_{V \sim \mathcal{F}}\left[\sum_{i=1}^{n} u_{i}(\sigma(V)]\right.\right.
$$

And so all togther we get:

$$
\begin{aligned}
& \mathbb{E}_{V \sim \mathcal{F}}\left[S W(\sigma(V)] \geq \mathbb{E}_{W \sim \mathcal{F}}[O P T(W)]-\sum_{i=1}^{n} \mathbb{E}_{V \sim} \mathcal{F}\left[V_{i}\left(S_{i}\right)\right]\right. \\
& \mathbb{E}_{V \sim \mathcal{F}}\left[S W(\sigma(V)] \geq \mathbb{E}_{W \sim \mathcal{F}}[O P T(W)]-\mathbb{E}_{V \sim \mathcal{F}}\left[\sum_{i=1}^{n} V_{i}\left(S_{i}\right)\right]\right. \\
& \quad 2 \mathbb{E}_{V \sim \mathcal{F}}\left[S W(\sigma(V)] \geq \mathbb{E}_{W \sim \mathcal{F}}[O P T(W)]\right.
\end{aligned}
$$

The left hand side is twice the expected SW of some BNE, and right hand side is the expected value of the optimal allocation. Since σ is an arbitrary BNE, we get our bound for BPoA.

Remark. In the full-information framework we proved that if for every profile v there exist bids $b_{1}^{*}, \ldots, b_{n}^{*}$ such that:

$$
\sum_{i=1}^{n} u_{i}\left(b_{i}^{*}, b_{-i}\right) \geq \lambda * O P T(v)-\mu * \sum_{i=1}^{n} p_{i}(b)
$$

Then:

$$
P o A \leq \frac{\lambda}{1+\mu}
$$

Using the "sample trick" of the last theorem's proof, we get the same result for BNE

5 PoA in single-item first price auctions

Our objective is getting an upper bound for the price of anarchy in first price auctions. In this lesson we cover a bound for pure N.E.

Remark. In a single-item second price auction, for every valuation profile v, there exist bids $b_{1}^{*}, \ldots, b_{n}^{*}$ such that: $\sum_{i=1}^{n} u_{i}\left(b_{i}^{*}, b_{-i}\right) \geq \max _{i=1}^{n} v_{i}-\max _{i=1}^{n} b_{i}$
We would like to get a similar connection in first price auctions in order to get our bound.
Lemma. In a first price auction, if the highest bidder bids $b_{i}^{*}=\frac{v_{i}}{2}$, and then rest of the bidders bid $b_{i}^{*}=0$ then:

$$
\text { (*) } \sum_{i=1}^{n} u_{i}\left(b_{i}^{*}, b_{-i}\right) \geq \frac{1}{2} \max _{i=1}^{n} v_{i}-\max _{i=1}^{n} b_{i}
$$

Proof: We will divide our proof into two cases:

- If $\frac{1}{2} \max _{i=1}^{n} v_{i}-\max _{i=1}^{n} b_{i}<0$, then since for every player $i, u_{i}\left(b_{i}^{*}, b_{-i}\right) \geq 0$, we get that $\left({ }^{*}\right)$ holds.
- Otherwise $\frac{1}{2} \max _{i=1}^{n} v_{i}>\max _{i=1}^{n} b_{i}$,
let $i^{*}=\operatorname{argmax} v_{i}, i^{*}$ wins the auction, yielding utility $\frac{1}{2} v_{i^{*}} \geq \frac{1}{2} v_{i^{*}}-\max _{i=1}^{n} b_{i}$.
This verifies (*).

Corollary. Every pure Nash equilibrium of a first-price single item auction has SW of at least $\frac{1}{2}$ of OPT.

Remark. It can be shown that each pure NE of a first price auction has optimal SW.
Proof of corollary: Let $v_{i}(b)$ be the SW contributed by player i in the outcome of the profile b, and let $p_{i}(b)$ be i 's payment and $u_{i}(b)=v_{i}(b)-p_{i}(b)$ his utility.
Then the following holds:

$$
\sum_{i=1}^{n} v_{i}(b)=\sum_{i=1}^{n} u_{i}(b)+\sum_{i=1}^{n} p_{i}(b) \geq \sum_{i=1}^{n} u_{i}\left(b_{i}^{*}, b_{-i}\right)+\max _{i} b_{i} \geq \frac{1}{2} \max _{i} v_{i}-\max _{i} b_{i}+\max _{i} b_{i}=\frac{1}{2} \max _{i} v_{i}
$$

