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Lecture 2

Lecturer: Michal Feldman Scribe: Jay Tenenbaum, Nitzan Weissman, Danny Vainstein

1 Min-max Theorem

Reminder: Last time we’ve seen the theorem which states that every finite game has a
mixed nash equilibrium. We’ve concentrated on two- player zero sum games, and stated
the following lemma:

Lemma 1 maxi minj ai,j ≤ minj maxi ai,j
(this essentially states that each player is better off playing second).

Proof: It is sufficient to prove that for every i0, j0 the following holds:
minj ai0,j ≤ maxi ai,j0 (since then it also implies for i0 set to the argmax of left side of
equation and j0 set to the argmin of the right side of the equation, so the equation follows)
Indeed, for each i0, j0 minj ai0,j ≤ ai0,j0 ≤ maxi ai,j0 .

Notation:
x = (x1, ..., xn) will note the mixed strategy of the row player.
y = (y1, ..., yn) will note the mixed strategy of the column player.

Observation 2 Given a pair of mixed strategies (x, y), the value of the row player will be:∑
i

∑
j

xiyjai,j

which is the expectation of the utility of the rows player.

Observation 3 Given a strategy x of player 1, player 2 will W.L.O.G choose a pure strat-
egy j (since each yi in the support of y has the same expected value) that minimizes:∑

i

xiai,j .

And therefore player 1’s best strategy is choosing:

x = arg max
s

min
j

∑
i

siai,j .
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Similarly, given a strategy y of player 2, player 1 will W.L.O.G choose a pure strategy i
that maximizes: ∑

j

yjai,j .

And therefore player 2’s best strategy is choosing:

y = arg min
r

max
i

∑
j

rjai,j .

Theorem 4 (min-max) Let x = {x1, ..., xn} and y = {y1, ..., ym} be mixed strategies.
Then

max
x

min
j

∑
i

xiai,j = min
y

max
i

∑
j

yjai,j .

Proof: The optimization problem that the row player (player 1) tries to solve is as follows:
Problem (1):

max
x

min
j

∑
i

xiai,j

such that ∑
i

xi = 1

∀i : xi ≥ 0.

Observe that problem (1) is equivalent to the following LP problem:
Problem (2):

max c

such that
∀j :

∑
i

xiai,j ≥ c

∑
i

xi = 1

∀i : xi ≥ 0.

The optimization problem that the column player (player 2) tries to solve is as follows:
Problem (1’):

min
y

max
i

∑
j

yjai,j

such that ∑
i

yi = 1
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∀j : yj ≥ 0

Problem (1’) is equivalent to the following LP problem:
Problem (2’):

min d

such that
∀i :

∑
j

yjai,j ≤ d

∑
j

yj = 1

∀j : yj ≥ 0.

We state the following two LP problems:
LP (3):

min
x

∑
i

xi

such that
∀j

∑
i

xiai,j ≥ 1

∀i : xi ≥ 0.

LP (3’):

max
y

∑
j

yj

such that
∀i
∑
j

yjai,j ≤ 1

∀j : yj ≥ 0.

Notation : We note the optimal value of the optimization problem (x) by opt(x).

Claim 5

OPT(3) = 1/OPT(2)

Proof: ≤: Let x be a feasible solution for (2) with the value c. Therefore, x/c =
(x1/c, ..., xn/c) is a feasible solution for (3) (inferred from the first equation of (2)), with
value 1/c (inferred from the second equation of (2)).
≥: Let x be a feasible solution for (3) with the value 1/c. Therefore, x∗c = (x1 ∗c, ..., xn ∗c)
is a feasible solution for (2) (inferred from the first equation of (3), and the value of (3)),
with value 1/c.
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Claim 6

OPT(3′) = 1/OPT(2′)

Proof: Similarly to previous claim.

To finish the proof, we note that (3),(3’) are dual LP problems, and from the duality theorem
we conclude that they have the same optimal value. therefore:

1/OPT(1) = 1/OPT(2) = OPT(3) = OPT(3′) = 1/OPT(2′) = 1/OPT(1′).

(OPT(1) = OPT(2) because they represent the same LP problem. Similarly, OPT(1′) =
OPT(2′))
We conclude that OPT(1) = OPT(1′).

The meaning of the min-max theorem is that for every two- player zero- sum game there
exists a value v, defined by the value achieved in the equality of the theorem. The row
player can achieve v as a lower bound if he plays first, and the column player can achieve
v as an upper bound (for the row player) if he plays first.

Corollary 7 The strategy profile (x, y) which achieves the optimum is a NE.

Proof: Assuming player 1 plays x, player 2 cannot give a better response than y (where
he achieves score v), since player 1 has v as a lower bound by playing x. Assuming player
2 plays y, player 1 cannot give a better response than x (where he achieves score v), since
player 2 has v as an upper bound by playing y.

Corollary 8 It is possible to compute a NE in polynomial time for every Zero-Sum game.
(since computing such a NE is equivalent to solving the LP problems (i.e. opt2)above, and
an LP problem is solvable in polynomial time with the ellipsoid method)

2 NP-Hardness of finding a NE

Fact 9 The following problem is NP-Hard:
Input: a bipartite graph G with sides U,D and a number k.
Problem: Are there two subsets of vertices U ′ ⊂ U,D′ ⊂ D both of size k such that they
form a bi-clique ( {a, b} ∈ E for all a ∈ U ′ and b ∈ D′).

Theorem 10 The following problem is NP-HARD:
In a 2-player game, where player 1 and player 2 both have m strategies, tell whether there
is a NE where the sum of the utilities is ≥ 2.

2-4



Proof:
We show a reduction from the bipartite bi-clique problem to the given problem.
Given a bipartite graph G = ((U,D), E) where D = (d1, .., dn), U = (u1, .., um) and a
number k, we build the following game:
Each player chooses a node from U or D.
If player 1 chooses u ∈ U and player 2 chooses d ∈ D then the utility is (1,1) if (u, d) ∈ E
otherwise it is (0,0).
If player 1 chooses d ∈ D and player 2 chooses u ∈ U then the utility is (0,0).
If player 1 chooses d1 ∈ D and player 2 chooses d2 ∈ D then the utility is (k,-k) if d1 = d2
and (0,0) otherwise.
Finally, if player 1 chooses u1 ∈ U and player 2 chooses u2 ∈ U then the utility is (-k,k) if
u1 = u2 and (0,0) otherwise.
The following illustrates the games’ matrix:

We now prove that G contains a (k,k) bi-clique ⇐⇒ the game has a NE with sum of
utilities ≥ 2.
=⇒:
Assume there is a (k,k) bi-clique U ′ ⊂ U, D′ ⊂ D. We focus on the following strategy
profile:
Player 1 chooses uniformly from the vertices of U ′, and Player 2 chooses uniformly from the
vertices of D′. We show the sum of utilities is ≥ 2 and that the strategy profile is a NE.
Each player has an expected value of 1:
Each result of such game has an outcome of (1,1) since there are edges from every node in
U ′ to every node in D′. Therefore the expected value is 1 for both players.
The strategy profile is a NE:
Set player 2’s strategy. We show player 1 cannot increase its utility by changing strategies.
As we’ve seen we can assume W.L.O.G, that player 1 switches to a pure strategy.
Player 1’s other possible responses are either (0,0), (1,1) or (k,-k). (k,-k) is clearly his best
option, on the other hand player 2 picks that cell with probability 1

k meaning the utility
is 1. Therefore player 1 can not increase its utility by changing strategies. Symmetrically
player 2 can not increase its utility, meaning the strategy profile is a NE.
⇐=:
Assume we’re given a strategy profile with sum of utilities ≥ 2 and that it is a NE. We show
there is a (k,k) bi-clique.
Since the sum of utilities is ≥ 2, only values in the upper left corner can have positive
probabilities. Since the sum of utilities is ≥ 2, and each outcome could contribute at most
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2 to the value (in (1,1)), we conclude that each node in the support of player 1 is connected
to each node in the support of player 2.Also, the amount of positive probabilities for each
player is ≥ k (otherwise we have a player, assume player 1, with a strategy with probability
> 1

k meaning player 2 could deviate to (-k,k) increasing his utility in contradiction to the
fact that we’re in a NE). Therefore, the nodes corresponding to the players’ strategies form
a bi-clique with at least k nodes at each side.

3 Atomic Selfish Routing

Definition 11 An atomic selfish routing game between k players is defined as follows:
• G=(V,E) - a digraph.
• Every player, i ∈ [k], has a source si ∈ V and a target ti ∈ V .
• Every player has one unit of traffic to pass from si to ti.
• Every players’ set of strategies is the set of paths from si to ti in G.
• Every edge has a cost function ce(xe) ≥ 0, xe being the number of players using edge e.

Example 1 For k=2,

The goal function is the sum of the cost of all the players.
• The strategy profile where one player uses the upper path and another player uses the
lower path is an equilibrium with cost 3, and this is the optimal strategy.
• The strategy profile where both players use the lower path is also an equilibrium. Its cost
is 4 and therefore it is not optimal.
Conclusion: In this game there are two different strategy profiles that are equilibrium.
One of them has a cost of 3 (and it is optimal), the other has a cost of 4.

Definition 12 Given a game G, and a family of games G define the price of anarchy of G
and G as follows:
• POA(G) = cost of worst equilibriam(G)

cost of optimal outcome(G)

• POA(G) = supG∈G POA(G)

In the example above, POA(G) = 4
3 .
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Theorem 13 Given an atomic, selfish, routing game G, with edges with affine costs (i.e.
∀e ∈ E ce(xe) = aexe + be, ae, be ≥ 0) ⇒ POA(G) ≤ 5

2 .

Observation 14 The theorem is tight - the following game G has POA(G) = 5
2 :

Clearly the OPT is reached when every player chooses its path to be one x edge⇒ cost(OPT)
= 4.
On the other hand, let’s look at the following strategy profile: each players’ path is the only
path that goes through 2 edges. For example, the path for s1 would be B,C,A. This profile
is clearly a NE and its cost is 10.
⇒ POA(G) = 10

4 = 5
2 .

Proof: (Of Theorem 13)
[Note we now focus strictly on pure strategies]
Let f be a flow (which essentially matches a profile strategy) in equilibrium, and let f* be
an optimal flow (which essentially matches an optimal profile strategy).
For each e ∈ E,
• Let fe be the number of players who chose the edge e in the flow f.
• Let fe* be the number of players who chose the edge e in the flow f*.

Stage 1:
Let pi be the route chosen by player i in f, and let pi* be the route chosen by player i in f*.
The flow f is in equilibrium, so:

∀i,
∑
e∈pi

ce(fe) ≤
∑

e∈p∗i∩pi

ce(fe) +
∑

e∈p∗i \pi

ce(fe + 1) ≤
∑
e∈p∗i

ce(fe + 1).

The first inequality is because f is a NE, therefore any deviation (in particular deviation to
f*) results in a cost that’s equal or greater. The second inequality is due to the fact that
every cost function is affine and therefore monotone.

2-7



Stage 2:
By summing the inequalities from stage 1 over all players, we get:

c(f) =

k∑
i=1

∑
e∈pi

ce(fe) ≤
k∑

i=1

∑
e∈p∗i

ce(fe + 1) =
∑
e∈E

f∗e ce(fe + 1) =
∑
e∈E

aef
∗
e (fe + 1) + bef

∗
e .

Stage 3:

Lemma 15 (without proof) For every two integers y, z ≥ 0,

y(z + 1) ≤ 5

3
y2 +

1

3
z2.

Substituting y = f∗e , z = fe, we get:

c(f) ≤
∑
e∈E

(ae(
5

3
(f∗e )2 +

1

3
f2
e ) + bef

∗
e ) ≤ 5

3

∑
e∈E

f∗e (aef
∗
e + be)+

1

3

∑
e∈E

fe(aefe + be) ≤
5

3
c(f∗)+

1

3
c(f).

So we get:

c(f) ≤ 5

2
c(f∗).

And that concludes the proof.
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