
Algorithmic Game Theory March 16, 2016

Lecture 3

Lecturer: Michal Feldman Scribe: Chen Ziv, Doron Tiferet, Tzvika Geft

Lesson overview

In the previous lessons we’ve seen games where there was always a Nash equilibrium. Today
we will see an example of other types of games and equilibria. Topics on the agenda:

1. Potential games

2. Solution concepts

3. Cost sharing games

1 Potential Games

Definition 1 A game is a potential game if there exists a potential function φ such that
for each profile s and for each unilateral deviation s′i such that s′ = (s′i, s−i), the following
holds for each player i:

φ(s′)− φ(s) = Ci(s
′)− Ci(s)

Theorem 2 Every potential game has a pure Nash equilibrium.

Proof: Let s be a profile that brings φ, the game’s potential function, to a minimum
(such s exists because we assume the number of profiles is finite). By the equality in φ’s
definition, s has to be a Nash equilibrium: If it’s not, there is a unilateral deviation by a
certain player that reduces his cost function. But, the equality means that the potential
function decreases as well due to the deviation, contrary to the fact that s is a minimum.

Theorem 3 Every selfish routing game has a pure Nash equilibrium.

Proof: Notations:

• f - The players’ flow.
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• fe - The number of players who use edge e as part of f .

• ce(i) - The edge cost e when used by i players.

We show that a selfish routing game is potential game with the following potential function:

φ(f) =
∑
e∈E

fe∑
i=1

ce(i)

For a given flow f let Pi be the flow according to f from si to ti for player i and let P̂i be a
different flow from si to ti. Let f̂ the flow after player i transitioned from Pi to P̂i Examine
what happened to the potential function during the transition:

φ(f̂)− φ(f) =
∑

e∈P̂i\Pi

Ce(fe + 1)−
∑

e∈Pi\P̂i

Ce(fe) (1)

The capacity of every edge that belongs both to Pi and P̂i doesn’t change, because the
number of players that went through the edge doesn’t change, and thus the cost of those
edges cancels each other in the difference.

For each edge e ∈ P̂i and e /∈ Pi the number of players using e is fe+1, and thus the difference
between φ(f̂) and φ(f) is Ce(fe + 1). Following a similar principle we can conclude that for
each edge e ∈ Pi and e /∈ P̂i the capacity of e is reduced by 1, and thus the last element of
the second operand is not canceled out and remains in the difference.

Examining the change for a specific player:

Recall that Ci(f) =
∑

e∈Pi
Ce(fe), so:

Ci(f̂)− Ci(f) =
∑

e∈P̂i\Pi

Ce(fe + 1)−
∑

e∈Pi\P̂i

Ce(fe) (2)

From the equivalence of (1) and (2) we conclude that the difference in φ is equal to the
change in the cost function of player i. Hence, it satisfies the conditions of a potential
function.

Remarks

1. Notice we did not assume anything about the cost function Ce(·) for the proof.

2. We can expand the theorem to congestion games.

Definition 4 Congestion games are games which have:
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• A finite number of players.

• A finite number of resources E.

• Each player i has a collection of possible strategies Si ⊆ 2E.

• Each resource e ∈ E has a cost functions Ce(Se) where Se is the number of players
using e in profile S.

Theorem 5 Every congestion game has a pure Nash equilibrium.

Proof: We define a potential function for a congestion game as follows:

φ(S) =
∑
e∈E

Se∑
i=1

Ce(i)

where Ce(i) is the cost for a player to use edge e with capacity i. The rest of the proof is
similar to the proof of theorem 3.

2 Solution concepts

In the previous lessons we saw the following definitions (all of which refer to minimization
games):

Definition 6 A strategy profile s = (si, s−i) is a pure Nash equilibrium if for every
player i and for every unilateral deviation s′i ∈ Si we have:

Ci(s) ≤ Ci(s′i, s−i)

Definition 7 The distributions σ1, ..., σk over S1, ..., Sk are a mixed equilibrium if for
every player i and for every unilateral deviation s′i ∈ Si we have:

Es∼σ[Ci(s)] ≤ Es∼σ[Ci(s
′
i, s−i)]

where σ is the product distribution σ1 × ...× σk.

Now we define broader concepts of equilibria:

Definition 8 The distribution σ over S1 × ...× Sk is a correlated equilibrium (CE) if
for every player i and for every si, s

′
i ∈ Si we have:

Es∼σ[Ci(s)|si] ≤ Es∼σ[Ci(s
′
i, s−i)|si]

Each player knows σ in addition to his own strategy si.
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Example 1 Traffic light game. Let’s describe the following two player maximization
game: Each player wants to pass the junction first but if both players cross it together an
accident will occur. Each player can decide whether to stop or to cross:

Player 2

Stop Go

Player 1
Stop 0, 0 0,1

Go 1,0 −5,−5

We have a pure equilibrium in either of two bold cells where one player stops and the other
passes. In such an equilibrium one player will never get a chance to cross the junction. A
correlated equilibrium gives both players a chance to cross while guaranteeing no accident,
like a traffic light. The corresponding distribution looks like this:

Player 2

Stop Go

Player 1
Stop 0.5

Go 0.5

Any change of strategy by a single player will lower the expectation since the change either
causes a collision or causes the junction not be used. Note that instead of a 50-50 distribution
we can have p and 1 − p (representing a traffic light with different durations for different
directions).

Definition 9 The distribution σ over S1 × ... × Sk is a coarse correlated equilibrium
(CCE) if for every player i and for every unilateral deviation s′i ∈ Si we have:

Es∼σ[Ci(s)] ≤ Es∼σ[Ci(s
′
i, s−i)]

Remark This equilibrium is the same as the mixed equilibrium except that the distri-
bution is now a joint one over all the players’ strategies instead of each player having his
own distribution.
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The definitions we went over form a hierarchy of equilibria:

Note that a pure Nash equilibrium doesn’t always exist while a mixed one always does.
Computationally though, it’s hard to find a mixed equilibrium.

Examples

We will now look at a selfish routing game and present different types of equilibria, applying
the definitions above. The game has 4 players, each wanting to get from s to t. There are
6 parallel edges between s and t, each having ce(x) = x as the cost function:

s t

0
1
2
3
4
5

Pure equilibrium: Each player chooses his own edge. There are
(
6
4

)
such equilibria.

Mixed equilibrium: Each player randomly (uniformly) chooses an edge.

CE: A uniform distribution over all the strategy profiles where there is one edge used by
two players and two edges with one player each.

CCE: The uniform distribution will be similar to the CE case except that now the set of
edges will be either {0, 1, 2} or {3, 4, 5}. Note how this is not a CE since when a player
”is told” to take edge 3 for example, a better strategy would be to take one of the edges
{0, 1, 2}, which are guaranteed to be free according to the distribution.

We can see how the overall cost of the equilibrium gets worse as it becomes more general. In
the pure equilibrium case the cost is 4 which is optimal, while in the CE and CCE cases the
cost goes up to 6 (and can be increased further). This leads us to continue the discussion
on price of anarchy we started previous lesson.
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Price of Anarchy Generalization

Last class we proved that the price of anarchy for atomic selfish routing games with edges
having affine costs is bounded by 2.5. The proof was done with respect to pure equilibria
but we would like to be able to talk about the more general equilibria introduced this class.
Just before we go in that direction, we will recap the stages in our previous proof:

Stage 1: We used the Nash equilibrium definition to get the following inequality for the
ith player:

Ci(s) ≤ Ci(s∗i , s−i)

Where s is the profile of some pure Nash equilibrium and s∗ is the optimal profile.

Stage 2: Summing up the above inequality over all the players allowed us to bound the
cost of the equilibrium:

cost(s) =
∑
i

Ci(s) ≤
∑
i

Ci(s
∗
i , s−i)

Stage 3: We then used a lemma that allowed us to separate the costs of the optimal profile
and the equilibrium: ∑

i

Ci(s
∗
i , s−i) ≤

5

3
cost(s∗) +

1

3
cost(s)

Rearranging the inequalities then gave the desired result:

cost(s)

cost(s∗)
≤ 2.5

We would like to generalize the process above. Let’s look at a definition that will help us:

Definition 10 A minimization game is called (λ, µ)−smooth if∑
i

Ci(s
∗
i , s−i) ≤ λcost(s∗) + µcost(s) (3)

for every strategy profile s and for some optimal profile s∗ when

cost(s) ≤
∑
i

Ci(s). (4)

Claim 11 For every minimization game that is (λ, µ)−smooth we have PoA ≤ λ
1−µ , with

respect to pure Nash equilibrium.
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Proof: We essentially repeat our steps above (substituting λ and µ) to get the desired
results. Let s be a pure NE:

cost(s) ≤
∑
i

Ci(s) ≤
∑
i

Ci(s
∗
i , s−i) ≤ λcost(s∗) + µcost(s)

(1− µ)cost(s) ≤ λcost(s∗)

PoA =
cost(s)

cost(s∗)
≤ λ

1− µ

The claim gives us very little progress since it only refers to pure equilibria, which don’t
always exist. Note that even extending it to mixed equilibria (whose existence is guaranteed)
won’t help us much in practice since finding them is computationally hard. We therefore
strengthen it to the most general equilibrium learned so far:

Theorem 12 Under the same conditions PoA ≤ λ
1−µ with respect to CCE.

Proof: Let σ be a CCE and s∗ be an optimal profile. The proof resembles the steps we
discussed above except that we are now working with the expected cost:

Es∼σ[cost(s)] ≤
(4)
Es∼σ

[∑
i

Ci(s)
]

=
∑
i

Es∼σ[Ci(s)] ≤
CCE

∑
i

Es∼σ[Ci(s
∗
i , s−i)]

= Es∼σ
[∑

i

Ci(s
∗
i , s−i)

]
≤
(3)
Es∼σ[λcost(s∗) + µcost(s)]

= λcost(s∗) + µEs∼σ[cost(s)]

As in stage 3 we now rearrange to have:

PoA =
Es∼σ[cost(s)]

cost(s∗)
≤ λ

1− µ

Remark Going back to the definition of (λ, µ)−smoothness, note that we require the
inequality (3) to hold for every strategy profile s. In our pure NE proof we only care about
equilibrium profiles, so we don’t need such a strict requirement. In contrast, the theorem
we just proved relies heavily on it holding for other profiles since a profile s which is drawn
from σ is not necessarily a pure equilibrium.
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3 Cost-Sharing Games

A cost-sharing game for k players consists of a directed graph G = (V,E), where each edge
e ∈ E has a constant cost γe. Each player i has a source vertex si and a target vertex ti.
The strategy space of player i consists of the set of all paths from si to ti in G. We define
the strategy profile as the vector p = (p1, p2, ..., pk), where pi denotes player i’s strategy.

The corresponding graph for strategy profile p is
(
V,
⋃k
i=1 p

i
)

.

In fair cost-sharing games, the cost of using an edge e under strategy profile p is evenly
distributed among all players that use the edge (the number of such players being pe):

ce (pe) = γe
pe

The cost each player i pays under profile p is given by ci (p) =
∑

e∈pi ce(pe), and the
collective cost of the profile is defined as the sum of all players costs:

cost(p) =
k∑
i=1

ci(p) =
k∑
i=1

∑
e∈pi

ce(pe) =
k∑
i=1

∑
e∈pi

γe
pe

=
∑

e∈E, pe≥1
γe

Note that cost-sharing games are potential games with the following potential function:

φ(p) =
∑
e∈E

pe∑
i=1

ce(i) =
∑
e∈E

pe∑
i=1

γe
i

As we have seen in Theorem 2, all local minima of the potential function are Nash equilibria.

Claim 13 There exists a cost-sharing game where the price of anarchy, with respect to pure
NE, is the number of players.

Proof: Consider the following game where all players share the source node s and target
node t:

s t

k

1

The optimal strategy profile p∗ has all the players using the bottom edge, with total cost
being cost(p∗) =

∑
e∈E, p∗e≥1 γe = 1.

Consider the strategy profile p where all the players use the top edge. The cost each player
pays is given by ci(p

∗) =
∑

e∈(p∗)i
γe
p∗e

=
γe1
p∗e1

= k
k = 1. The only deviation that can happen is
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a player taking the bottom edge and paying ci(p) =
∑

e∈pi
γe
pe

=
γe2
pe2

= 1
1 = 1, which has no

added value. This makes p a pure Nash equilibrium, with cost(p) =
∑

e∈(p∗)i, p∗e≥1 γe = k.

The price of anarchy for this game is then PoA = cost(p)
cost(p∗) = k

1 = k

By the lemma, we get that cost-sharing games’ PoA could not be bounded by a constant.
At first, this result seems to imply that in such games the players’ selfish behavior will likely
lead to high overall cost. But we can define a different measure: instead of referring to the
worst price equilibrium, we examine the price of the best price equilibrium. By setting the
initial state to the best equilibrium, we can have a system that doesn’t necessarily have a
very high overall cost and still maintain stability.

Definition 14 The price of stability, denoted PoS, is defined as follows:

PoS =
cost(best equilibrium)

cost(OPT )

For the aforementioned game, the PoS will be 1, since the optimal state is also an equilib-
rium. This encouraging result leads us to believe that the PoS for all cost-sharing games
could be upper-bounded by a constant.

Claim 15 The maximal PoA for all cost-sharing games could not be upper-bounded by a
constant.

Proof: Consider the following k-player game:

Each player i is assigned with a source node si and a target node t.
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The optimal profile involves all players using the edge whose cost is 1 + ε, which will yield
the collective cost 1 + ε. However, all strategies which involve the 1 + ε edge are not an
equilibrium. We can prove that by contradiction: Let’s assume there is an equilibrium
which involves the 1 + ε edge, and let sm be the node with maximal index which routes
to this edge. There are no more than m players using this edge, which means the price of
this route is lower-bounded by 1+ε

m . That means by changing his route, the sm player could
achieve the cost of 1

m , in contradiction the profile being an equilibrium. That means there
is only one equilibrium, which involves the upper edges. Hence:

cost(OPT ) = 1 + ε

cost(best equilibrium) =
k∑
i=1

1

i
= Hk ≈ log(k)

⇒ cost(best equilibrium)

cost(OPT )
≈ log(k)

Lemma 16 In fair cost-sharing games, for each strategy profile p we have the following:

cost (p) ≤ Φ (p) ≤ Hk · cost(p)

Proof: For every edge e, which is used in strategy profile p we have the following in-
equality:

1 ≤
pe∑
i=1

1

i
≤

k∑
i=1

1

i
= Hk

By multiplying by γe we get:

γe ≤ γe ·
pe∑
i=1

1

i
≤ γe ·Hk

Now, if we sum on all edges that are used by some player in the profile we get:

∑
e∈pi, pe≥1

γe = cost(p) ≤
∑

e∈pi, pe≥1

γe ·
pe∑
i=1

1

i
= Φ (p) ≤

∑
e∈pi, pe≥1

γe ·Hk = Hk · cost(p)

Theorem 17 In all fair cost-sharing games for k players: PoS ≤ Hk
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Proof: Let p be a strategy profile which minimizes Φ. By Theorem 2, p is a Nash
equilibrium.

According to Lemma 14: cost(p) ≤ Φ(p).

By the selection of p and the optimal strategies profile p∗ the following holds: Φ(p) ≤ Φ(p∗).

By the second part of the lemma: Φ(p∗) ≤ Hk · cost(p∗).

Combining the inequalities so far yields cost(p)
cost(p∗) ≤ Hk.

Since PoS ≤ cost(p)
cost(p∗) , we get PoS ≤ Hk

Definition 18 Given a strategy profile S, a coalition deviation S
′
A ∈

∏
i∈A si is called a

beneficial coalitional deviation for coalition A, if

∀i ∈ A : ci

(
S
′
A, S−A

)
≤ ci(S), and

∃i ∈ A : ci

(
S
′
A, S−A

)
< ci(S)

Definition 19 A profile S is a strong equilibrium if there are no beneficial coalitional
deviations from it.

Theorem 20 The PoA of a fair cost-sharing game for k players, with respect to strong
equilibrium, is bounded by Hk.

The theorem will be proven next class.
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