
Algorithmic Game Theory March 23, 2016

Lecture 4

Lecturer: Michal Feldman Scribe: Nadav Bar, Omri Koshorek,

Noam Mor, Michael Rotman

1 Coalitions

In the previous lecture, we have defined a Strong Nash Equilibrium as an equilibrium in
which no coalition can improve its situation by deviating from it. We now define the Strong
Price of Anarchy as the cost of the best Strong NE relative to the optimal cost.

Definition 1 SPoA = Cost of best Strong NE
OPT

Theorem 2 For any fair cost-sharing game:

SPoA = θ (log n) (1)

Observation 3 We’ve already seen that, for a cost-sharing game:

PoA = n (2)

PoS = log n (3)

We’ll soon see that the SPoA ≤ log n.

Let P = (P1, . . . , Pk) be a profile in strong equilibrium in a fair cost-sharing game, and let
P ∗ = (P ∗1, . . . , P

∗
k) be the optimal profile in the same game.

Let Aj = {1, . . . , j} the coalition of the players 1 through j. Since P is a strong equilibrium,
it is not worth it for any of the coalitions Aj to deviate from P . Therefore there has to be
a player in each of these coalitions that does not benefit from the transition. Without loss
of generality, we assume that player j does not benefit from the transition of Aj from P to
P ∗.

Now we use the following two facts:

• The cost of a player j when everyone plays profile P is at least player j’s cost after
Aj has transitioned to profile P ∗ - this because of our assumption that player j does
not benefit from the transition.

4-1

• Player j’s cost when Aj plays P ∗ is at least their cost when Aj plays P ∗ and no other
player exists. This because adding players to a fair cost-sharing game can only lower
the cost for everyone.

We write the equations and then sum everything up.

ck (P) ≤ ck

(
P ∗Ak

, P−Ak

)
≤ ck

(
P ∗Ak

)
ck−1 (P) ≤ ck−1

(
P ∗Ak−1

, P−Ak−1

)
≤ ck−1

(
P ∗Ak−1

)
... ≤

... ≤
...

c1 (P) ≤ c1

(
P ∗A1

, P−A1

)
≤ c1

(
P ∗A1

)
cost (P) ≤

k∑
i=1

ci
(
P ∗Ai

)
(4)

We need to derive an upper bound for cost(P)
cost(P ∗) . Reminder: fair cost-sharing games are

potential games with the following potential function:

φ (P) =
∑
e∈E

pe∑
i=1

γe
i

(5)

The following important observation relates ci
(
P ∗Ai

)
to the potential function:

ci
(
P ∗Ai

)
=
∑
e∈P ∗

i

γe
P ie

= φ
(
P ∗Ai

)
− φ

(
P ∗Ai−1

)
(6)

where P ie is the number of players from the group Ai that use the edge e as part of the
profile P ∗. We now have:

cost (P) ≤
k∑
i=1

ci
(
P ∗Ai

)
(7)

=

k∑
i=1

[
φ
(
P ∗Ai

)
− φ

(
P ∗Ai−1

)]
(8)

= φ (P ∗)− φ
(
P ∗A0

)
(9)

= φ (P ∗) (10)

≤ Hkcost (P ∗) (11)

4-2

(8) is a telescopic sum, and φ
(
P ∗A0

)
is 0, since there are no players in A0. The inequality

in (11) is from last week’s lemma.

Therefore we get:

cost (P)

cost (P ∗)
≤ Hk (12)

2 Dynamics and Equilibrium

Up until now our discussion only included static equilibriums. Here is what we have so far:

Coarse-Correlated Equilibrium

Correlated Equilibrium

Mixed Nash Equilibrium

Pure Nash Equilibrium

Figure 1: Equilibrium Hierarchy

We now move on to discuss dynamics. We will be interested in dynamics that converge
quickly (polynomially) to an equilibrium.

2.1 Best Response Dynamics

Definition 4 Best-Response dynamics (BRD).

As long as the current profile, S, is not a pure equilibrium:

• Find a player i and a profitable deviation s′i - a strategy s′i such that ci (S) >
ci (s′i, S−i).

• Switch from the profile S to the profile (s′i, S−i).

Observation 5 If BRD dynamic stops, it stops at a Nash Equilibrium.

4-3

Proof: BRD continues as long as there is still a player i that can improve their situation
by changing their strategy alone. Therefore, if BRD stopped, it means that no player can
improve their situation by deviating alone from S - that S is a NE.

There are two variants of this dynamic. In better response dynamics we choose any profitable
s′i. In best response dynamics, we choose a s′i that is the best response to S−i. We don’t
address this distinction now, but it may come into effect later.

Fact 6 There can be games that have a Pure Nash Equilibrium, but for which BRD will
never converge.

Reminder: potential games are games such that there is a function φ that for every profile
S, and all players i, and all deviations s′i ∈ Si,

φ
(
si
′, s−i

)
− φ (s) = ci

(
si
′, s−i

)
− ci (s) (13)

Let us now examine BRD’s convergence in potential games. Since BRD always chooses a
favourable deviation for player i, it follows that the value of ci is strictly decreasing during
BRD. From the equation above, a decrease in ci must also decrease φ. Therefore the value
of φ is strictly decreasing during BRD. Since our games are finite, φ must have a minimum,
and therefore BRD will always converge in potential games.

Fact 7 Finding a mixed NE is PPAD-complete. Finding a pure NE in potential games is
PLS-complete.

2.2 No Regret Dynamics

Assume that we have only one player. That player certain player has n possible actions
they can do. A is actions set.

At any given time t = 1, . . . , T :

1. The player chooses a mixed strategy pt (a distribution over A).

2. The adversary chooses a cost function ct : A→ [0, 1].

3. An action at is chosen according to the distribution pt, and the cost to the player is
ct(at). The cost function ct is known to the player.

Given the cost functions ct, the best cost of the algorithm is:

best cost =
T∑
t=1

min
a∈A

ct (a) (14)

4-4

We would like to find a strategy for the player that minimizes the difference between the
the actual cost of the dynamic and the best cost, under the assumption that our adversary
wants to increase the player’s cost.

Observation 8 The difference between the best cost and the actual cost in the No-Regret
dynamic can be very large.

Example 1 In this example, there are only two possible actions: |A| = 2, and the adversary
chooses ct from these two options:

ct (a) =

{ (
1 0

)(
0 1

) (15)

At each timestamp, the adversary gives a cost of 1 to the action for which the player gave
the highest probability, and for the other a cost of 0.

If the player plays strategy 1 with probably p and strategy 2 with probability 1 − p, their
expected cost is max (p, 1− p). Therefore the best course of action for the player is to play
each of the strategies with probability 0.5. The player’s expected cost after T rounds is
therefore T

2 . The best cost for the player is 0.

The difference between the expected cost and the best cost in this example is linear with
T , which is very bad. This means we won’t be able to obtain a good upper bound. We look
then for a different metric for success.

Definition 9 The regret of a sequence of actions a1, . . . , aT against a constant action a ∈ A
is:

1

T

[
T∑
t=1

(
ct
(
at
)
− ct (a)

)]
(16)

Definition 10 (No Regret Algorithm) Let A be an online decision-making algorithm.

• An adversary chooses a function ct : A→ [0, 1].

• The algorithm A has no regret if for every adversary and for every action a

Regret →
T→∞

0 (17)

Observation 11 Any deterministic algorithm will achieve poor results in this benchmark.

Example 2 Assume there are n possible actions, with T � n. Assume that the player
plays a pure strategy at in day t. Then the adversary will choose:

ct (a) =

{
1 a = at

0 a 6= at
(18)

4-5

After T rounds, there has to be an action a whose total cost is at most T
n - otherwise the

total cost exceeds T (pigeonhole principle). The regret against the action a is then:

1

T

[
T − T

n

]
9

T→∞
0 (19)

Multiplicative Weight (MW) Algorithm

1. w1 (a) = 1, ∀a ∈ A

2. ∀t = 1, . . . , T , pt = wt

Σt , Σt =
∑

a∈Aw
t (a)

Weight Update:

wt+1 (a) = wt (a) (1− ε)c
t(a) (20)

We now present an analysis of the algorithm. We will compare the cost of the algorithm,
and the cost of the best single action a∗, to ΣT . Let OPT =

∑T
t=1 c

t (a∗), the cost of the
best action.

• A lower bound on ΣT is ΣT ≥ (1− ε)OPT

Proof:

ΣT =
∑
a∈A

wT (a) ≥ wt (a∗) = w1 (a∗)

T∏
t=1

(1− ε)c
t(a∗) = (1− ε)

∑T
t=1 c

t(a∗) = (1− ε)OPT(21)

• The expectation value of the algorithm at time t is

ALGt =
∑
a∈A

pt (a) ct (a) =
∑
a∈A

wt (a)

Σt
ct (a) (22)

Recall that

Σt+1 =
∑
a∈A

wt+1 (a) =
∑
a∈A

wt (a) (1− ε)c
t(a) ≤

∑
a∈A

wt (a)
(
1− εct (a)

)
(23)

The above is true for ε ∈
[
0, 1

2

]
and ct (a) ∈ [0, 1]. The RHS is∑

a∈A
wt (a)

(
1− εct (a)

)
= Σt

(
1− εALGt

)
(24)

We obtained,

Σt+1 ≤ Σt
(
1− εALGt

)
(25)

4-6

We can now relate between the two bounds

(1− ε)OPT ≤ ΣT ≤ Σ1
T∏
t=1

(
1− εALGt

)
(26)

Taking ln from both sides we obtain

OPT ln (1− ε) ≤ lnn+
T∑
t=1

ln
(
1− εALGt

)
(27)

The Taylor series expansion for ln around 0 is: ln (1− ε) = −ε− 1
2ε

2 − · · · ≤ −ε. Therefore
we have:

OPT

(
−ε− 1

2
ε2
)
≤ OPT

(
−ε− ε2

)
≤ ln n−

T∑
t=1

εALGt (28)

Rearranging the terms and recalling that OPT is bound from above by T , we get:

ALG =

T∑
t=1

ALGt ≤ OPT + εOPT +
lnn

ε
≤ OPT + εT +

lnn

ε
(29)

We want to minimize the Tε+ lnn
ε term, so we choose ε =

√
lnn
T . This gives:

ALG ≤ OPT + 2
√
T lnn (30)

By definition, the regret is:

Regret =
1

T
(ALG−OPT) ≤ 2

√
lnn

T
(31)

One can easily see that as T goes to infinity, the regret goes to 0. This shows that the
Multiplicative Weight algorithm is a No-Regret algorithm.

Observation 12 The number of iterations required to get Regret = α is logn
α2 .

Proof:

Regret ≤ 2

√
lnn

T
= α⇒ T = 4

log n

α2
(32)

The Multiplicative Weight algorithm converges to α Regret in a number of steps quadratic
in 1

α , and as we have seen, is a No-Regret algorithm.

4-7

