```
Algorithmic Game Theory

\section*{Lecture 6}
```

Lecturer: Michal Feldman Scribe: E. Cohen, J. Millic, M. Arar, D. Shterenberg

```

\section*{1 Auctions}

\subsection*{1.1 Single Parameter Environment}

Our settings for the discussion of auctions is the following:
Given \(n\) players such that player \(i\) has \(\left(v_{i}, b_{i}\right)\) where \(v_{i}\) is the value for an item under auction and \(b_{i}\) is the declared value, i.e. \(b_{i}\) is the strategy of player \(i\). Each players objective is to maximize the utility value
\[
u_{i}\left(b_{i}\right)=x_{i}\left(b_{i}\right) v_{i}\left(b_{i}\right)-p_{i}\left(b_{i}\right)
\]

The declared value \(\left(b_{i}\right)\) is known to all while the actual value \(\left(v_{i}\right)\) is private.

Definition \(1 A\) Mechanism is a function \(M: b \rightarrow(X(b), P(b))\) where \(b=\left(b_{1}, \ldots, b_{n}\right)\) is a strategy, \(X(b)=\left(x_{1}, \ldots, x_{n}\right)\) is an allocation rule and \(P(b)=\left(p_{1}, \ldots, p_{n}\right)\) is a payment rule.

Our main goal is to design a mechanism with the following properties:
1. DISC - Dominant Strategy Incentive Compatible.
2. Economical Efficiency - Social welfare is maximized for rational players.
3. Computational Efficiency - The auction allocation rule can be computed in polynomial time.

\section*{Definition 2}
- An allocation rule \(x\) is Implementable if a payment rule \(p\) exists such that the mechanism \(M(x, p)\) is DSIC.
- An allocation rule \(x\) is Monotone if for every player \(i\) and bid vector \(b_{i}\), the allocation \(x_{i}\left(z, b_{i}\right)\) is non-decreasing in \(z\).

Theorem 3 (Myerson)
For every Single Parameter Environment:
1. An allocation rule \(x\) is implementable \(\Longleftrightarrow x\) is monotone.
2. If \(x\) is monotone, there is a unique payment rule \(p\) such that \(M(x, p)\) is DISC (under the assumption \(p_{i}\left(0, b_{-i}\right)=0\), i.e. if a player bids 0 , the payment will be 0\()\).

Proof: Let \(i\) be a player with parameters \(\left(v_{i}, b_{i}\right)\). Throughout the proof, we ease notations by using:
- \(x(z)=x_{i}\left(z, b_{-i}\right)\)
- \(p(z)=p_{i}\left(z, b_{-i}\right)\)
1. An allocation rule \(x\) is implementable \(\Longleftrightarrow x\) is monotone

\section*{- \(x\) is implementable \(\Longrightarrow x\) is monotone}

Assume \(x\) is implementable, i.e. the mechanism is DISC.
Let \(z, y\) be a values such that \(0 \leq z<y\).
(a)
\[
\underbrace{z \cdot x(z)-p(z)}_{v=z, b=z} \geq \underbrace{z \cdot x(y)-p(y)}_{v=z, b=y}
\]
(b)
\[
\underbrace{y \cdot x(y)-p(y)}_{v=y, b=y} \geq \underbrace{y \cdot x(z)-p(z)}_{v=y, b=z}
\]

The inequalities follow from the assumption that the mechanism is DISC.
From inequality (a) we have
\[
p(y)-p(z) \geq z[x(y)-x(z)]
\]

From inequality (b) we have
\[
p(y)-p(z) \leq y[x(y)-x(z)]
\]

Putting together, we obtain
\[
z[x(y)-x(z)] \leq p(y)-p(z) \leq y[x(y)-x(z)]
\]

In particular
\[
z[x(y)-x(z)] \leq y[x(y)-x(z)]
\]

Since we assume \(z<y\), is must hold that \(x(y)-x(z) \geq 0\), i.e. \(x(y) \geq x(z)\). Thus \(x\) is monotone.
\(\frac{\text { Truth-Telling }}{b_{i}=v_{i}} \quad \frac{\text { Over-Bidding }}{b_{i}>v_{i}} \quad \frac{\text { Under-Bidding }}{b_{i}<v_{i}}\)


Figure 1: Strategy results
- \(x\) is implementable \(\Longleftarrow x\) is monotone

Proof by drawings (see Figure 1): It is clear from the graph that setting \(b_{i}=v_{i}\) is the dominant strategy as it achieves the highest utility value.

Note that the utility in the over-bidding case is the area under the graph minus the area above.


Figure 2: Graph of \(x_{i}\left(z, b_{-i}\right)\)
2. Assume \(x\) is monotone. Let \(z, y\) be values such that \(0 \leq z<y\). Using the analysis above, we have
\[
z[x(y)-x(z)] \leq p(y)-p(z) \leq y[x(y)-x(z)]
\]

Next, we divide the inequality by \((y-z)\) (note that \(y>z\) so we can do such a division)
\[
x \frac{[x(y)-x(z)]}{y-z} \leq \frac{p(y)-p(z)}{y-z} \leq y \frac{[x(y)-x(z)]}{y-z}
\]

As \(y \rightarrow z^{+}\)we obtain
\[
\lim _{y \rightarrow z^{+}} z \underbrace{\frac{x(y)-x(z)}{y-z}}_{x^{\prime}(z)} \leq \lim _{y \rightarrow z^{+}} \underbrace{\frac{p(y)-p(z)}{y-z}}_{p^{\prime}(z)} \leq \lim _{y \rightarrow z^{+}} \underbrace{\frac{x(y)-x(z)}{y-z}}_{x^{\prime}(z)}
\]

Finally, from the sandwich rule, we have
\[
\forall z \quad p^{\prime}(z)=z \cdot x^{\prime}(z)
\]

Notice that we have assumed \(x \in C^{1}\) for the purpose of the proof.

Assume \(p(0)=0\). Recall that \(x(z) \equiv x_{i}\left(z, b_{-i}\right)\). By fixing \(i, b_{-i}\), since \(x\) is monotone we have (See also Figure 2)
\[
p_{i}\left(b_{i}, b_{-i}\right)=\int_{0}^{b_{i}} p^{\prime}(z) d z=\int_{0}^{b_{i}} z \cdot \frac{d}{d z} x_{i}\left(z, b_{-i}\right) d z
\]

Using integration by parts we obtain
\[
p_{i}\left(b_{i}, b_{-i}\right)=b_{i} \cdot x_{i}\left(b_{i}\right)-\int_{0}^{b_{i}} x_{i}(z) d z
\]

So we have reached a closed form for the payment thus proving part 2 of the theorem.

\section*{Examples}
- Given the "step" function in Figure 3:

Let \(z_{1}, \ldots, z_{l}\) be the "jump" points in the function \(x_{i}\left(z, b_{-i}\right)\) in the segment \(\left[0, b_{i}\right]\). More formally,
\[
h\left(z_{j}\right)=\lim _{\epsilon \rightarrow 0} x_{i}\left(z_{j}+\epsilon, b_{-i}\right)-x_{i}\left(z_{j}-\epsilon, b_{-i}\right)
\]

By Myerson's theorem the payment is:
\[
p_{i}\left(b_{i}, b_{-i}\right)=\sum_{j=1}^{l} z_{j} \cdot h\left(z_{j}\right)
\]

Figure 3: Allocation "step" function
- Recall the problem of allocating banners. Assume there are \(k\) slots for \(k\) banners. The probability that a banner in slot \(j\) is clicked is \(\alpha_{j}\). Assume \(\alpha_{1}, \ldots, \alpha_{k}\) are in descending order.


Figure 4: Banner Allocation
The allocation function is a monotone "step" function as described in Figure 4. The payment for player \(i\) is
\[
p_{i}(b)=\sum_{j=i}^{k} b_{j+1} \cdot\left(\alpha_{j}-\alpha_{j+1}\right)
\]

And the payment per click is
\[
p_{i}(b)=\sum_{j=i}^{k} b_{j+1} \cdot \frac{\left(\alpha_{j}-\alpha_{j+1}\right)}{\alpha_{i}}
\]

\subsection*{1.2 Multi-Parameter Environment}

In Multi-Parameter Environments there are n players. A finite set of possible outcomes \(\Omega\). Each player \(i\) has a private value \(v_{i}(\omega) \quad \forall \omega \in \Omega\).

Remark In a Single Item Auction \(\Omega=\left\{\omega_{0}, \ldots, \omega_{n}\right\}\). Where \(\omega_{i}\) is the result of allocating the item to player \(i\), and \(\omega_{0}\) is the result of not allocating the item at all.

Our goal is to build a truthful mechanism that maximizes the social welfare
\[
S W(\omega)=\sum_{i=1}^{n} v_{i}(\omega)
\]

Theorem 4 (Vickrey-Clarke-Grove - VCG)
There is a DISC mechanism that maximizes the Social Welfare.

\section*{Proof:}

In order to prove the theorem, we present the VCG Mechanism and show it is DISC.
- Allocation Rule: \(\omega^{*}=\operatorname{argmax}_{\omega \in \Omega} \sum_{i=1}^{n} b_{i}(\omega)\)
- Payment Rule: \(p_{i}(b)=\max _{\omega \in \Omega} \sum_{j \neq i} b_{j}(\omega)-\sum_{j \neq i} b_{j}\left(\omega^{*}\right)\)

Note that the Allocation Rule is defined to maximize the social welfare. The Payment Rule for player \(i\) is the difference between the maximum social welfare obtained by not considering player \(i\) to the maximum social welfare of all players.

Next, we show that the VCG Mechanism is DISC.

Given player \(i\), and payments for the rest of the players \(b_{-i}\),
\[
u_{i}(b)=v_{i}\left(\omega^{*}\right)-p_{i}(b)=v_{i}\left(\omega^{*}\right)-\max _{\omega \in \Omega} \sum_{j \neq i} b_{j}(\omega)+\sum_{j \neq i} b_{j}\left(\omega^{*}\right)
\]

Since the objective of player \(i\) is to maximize \(u_{i}(b)\) and the expression \(\max _{\omega \in \Omega} \sum_{j \neq i} b_{j}(\omega)\) is not affected by player \(i\). Player \(i\) 's objective is therefore
\[
\max _{b_{i}} u_{i}\left(b_{i}\right)=\max _{b_{i}} v_{i}\left(\omega^{*}\left(b_{i}\right)\right)+\sum_{j \neq i} b_{j}\left(\omega^{*}\left(b_{i}\right)\right)
\]

One can notice that this is exactly the Social Welfare which is maximized by the mechanism. This means that in order for player \(i\) to maximize \(u_{i}\left(b_{i}\right)\), the dominant strategy is exactly \(b_{i}=v_{i}\) - the mechanism is DISC.

\section*{Examples}

\section*{1. Single Item Auction}

Using VCG's mechanism will result with the \(2^{\text {nd }}\) Price Auction as the Allocation Rule is to give the item to the highest bidder. The Payment Rule is defined as \(p_{i}(b)=\max _{\omega} \in \Omega \sum_{i \neq j} b_{j}(\omega)-\sum_{i \neq j} b_{j}\left(\omega^{*}\right)\) which means the buyer pays the bid of the second highest bidder while all other players pay 0 .

\section*{2. K Identical Items}

Assume \(n>k\). There are \(k\) identical products. Each player wants 1 product. W.L.O.G \(v_{1}>v_{2}>\cdots>v_{n}\). Players \(1, \ldots, k\) are allocated with an item by the \(V C G\) mechanism. The cost \(p_{i}(b)=\sum_{j=1, j \neq i}^{k+1} b_{j}-\sum_{j=1, j \neq i}^{k} b_{j}=b_{k+1}\). All other players pay 0 .

\section*{3. Public Goods}

Alice, Bob, Carol and Dorothy are citizens of the infamous city Computer Sciencity. The mayor is facing the decision whether to build a bridge for the citizens welfare. Building the bridge costs 1000. The benefit of the citizens: \(V_{A}=300, V_{B}=400\), \(V_{C}=300, V_{D}=200\)
Using \(V C G\) 's mechanism, the Allocation Rule is
\[
S W=\sum_{i \in\{A, B, C, D\}} V_{i}-\underbrace{1000}_{\text {Bridge Cost }}
\]

Which means the bridge is built \(\Longleftrightarrow \sum_{i \in\{A, B, C, D\}} V_{i}-1000>0\) The Payment Rule is:
- \(P_{A}=P_{C}=0-(900-1000)=100\)
- \(P_{B}=0-(800-1000)=200\)
- \(P_{D}=0-(1000-1000)=0\)

\section*{4. Procurement Auction}

There are \(n\) suppliers for an item. Supplier \(i\) pays for the item \(v_{i}\). Social Welfare is maximized by buying from the supplier with the lowest price.

For example \(V_{A}=-17, V_{B}=-20, V_{C}=-30\) are the suppliers cost of the item. Social Welfare is obtained by buying from supplier \(A\).
\[
P_{A}=-20-0=-20
\]

So the price of the item from supplier \(A\) is set to 20 by the \(V C G\) mechanism.

\section*{2 Combinatorial Auctions}

There are \(n\) rational players.
There are \(m\) items in group \(M\)
Each player \(i\) has a validation function
\[
V_{i}: 2^{[m]} \rightarrow \mathbb{R}^{\geq 0}
\]

Assume

\section*{1. Normalization}
\[
V_{i}(\emptyset)=0
\]
2. Monotonicity, Free Disposal
\[
\forall S \subseteq T \subseteq M \quad V_{i}(S) \leq V_{i}(T)
\]

The goal is to maximize Social Welfare.

Definition 5 Allocation Rule is a collection of sets \(X=\left(X_{1}, \ldots, X_{n}\right)\) such that \(\forall i X_{i} \subseteq M\).
\[
\forall i \neq j X_{i} \cap X_{j}=\emptyset \quad \bigcup_{i=1}^{n} X_{i}=M
\]```

