Lecture 7

Lecturer: Michal Feldman, Scribe: Oron Laor, Yotam Frank, Sofia Rovinsky, Noam Iluz

Combinatorial Auctions

We denote M as the set of different products that are up for sale, and m as the size of M. There are n (strategic) players. Each player i has a valuation function: $v_{i}: 2^{m} \rightarrow \mathbb{R}^{+}$.

Standard Assumptions: Normalization: $v_{i}(\emptyset)=0$; Monotony: $v_{i}(S) \leq v_{i}(T)$ for all $S \subseteq T \subseteq M$.

Allocation: $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ where: $x_{i} \subseteq M$ for all $i, x_{i} \cap x_{j}=\emptyset$ for all $j \neq i$, and $\bigcup_{i} x_{i}=M$.

Goal: Finding an allocation x that Maximizes the Social Welfare (SW), defined as: $\sum_{i=1}^{n} v_{i}\left(x_{i}\right)$.

To achieve our goal, we would have been happy to use VCG, but we might encounter, among other issues, a complexity problem. For example, we would get 2^{m} values from each player.

The 3 main issues in AGT

1. Representation: we want to be able to represent all components of a game, in an efficient way.
2. Strategic: we want to encourage the players to tell the truth.
3. Algorithmic: we want to be able to describe how to maximize SW (efficiently!).

We will now look at a case in which all those 3 issues work nicely (with VCG).

1 Unit Demand

We denote M as the set of different products that are up for sale, and m as the size of M. There are n (strategic) players. The valuation function for each player is as follows: Each player i has $v_{i 1}, v_{i 2}, \ldots, v_{i m}$ values for the products.

For each $S \subset M$, and for each player i we'll denote: $v_{i}(S)=\max _{j \in S}\left\{v_{i j}\right\}$.

A Reminder of the VCG Mechanism

The mechanism gets $\left\{v_{i}\right\}_{i}$, and then for S - an allocation that maximizes SW , and for $S^{\prime}=\left(S_{1}^{\prime}, \ldots, S_{n}^{\prime}\right)$:
$P_{i}=\max _{S}^{\prime} \sum_{j \neq i} v_{i}\left(S_{i}^{\prime}\right)-\sum_{j \neq i} v_{j}\left(S_{j}^{\prime}\right)$.

So, here:

1. Representation is not problematic. Specifically, each player submits only m values, not 2^{m}.
2. No Strategic problem as well.
3. What about the Algorithmic issue? this is in fact a maximal matching problem (!), to which we know an algorithm that runs in polynomial time.

2 Single-Minded Bidders

- Each player i will report: $\left(S_{i}^{*}, v_{i}^{*}\right)$, while $S_{i}^{*} \subseteq M$ is a subset of products the player i desires.
- For all $S \subseteq M: v_{i}(S)=\left\{\begin{array}{l}v_{i}^{*} S_{i} \subseteq S, \\ 0 \text { otherwise }\end{array}\right.$.

In words: If a player gets a package that contains the subset of products she desires $\left(S_{I}^{*}\right)$, then she pays $\left(v_{i}^{*}\right)$. Otherwise - she pays nothing (since the player is only interested in one item). Note that representation still isn't a problem.

Claim 1 Maximizing SW for Single-Minded Bidders is a (very) hard problem: Given input $\left(S_{i}^{*}, v_{i}^{*}\right)$ and an integer k, determining whether it's possible to achieve $k \leq S W$ is NP-Hard.

Proof: We will prove the above by a reduction from IS (Independent Set). Namely, Given a graph $G(V, E)$, and an integer k, we show that a solution for achieving $k \leq S W$ gives us a solution for IS:

For each vertex in the graph we create a player $i \in V$. We define the player's package to be: $S_{i}^{*}=\{(i, j) \in E\}$. Now we can notice that an allocation S is valid iff the set of "winners": $\left\{i: S_{i}^{*} \subset S_{i}\right\}$ is an Independent Set in the original graph.

From the proof above, we can say: $k \leq S W \Leftrightarrow I S \geq k$. Because of that (elaboration omitted), we can say that we can't approximate the solution better than \sqrt{m}.

Claim 2 The exist a truthful, polynomial mechanism, that gives an approximation rate of \sqrt{m}.

The Mechanism

- Each player i reports: $\left(S_{i}^{*}, v_{i}^{*}\right)$.
- The players are sorted by: $\frac{v_{1}^{*}}{\sqrt{\left|S_{1}^{*}\right|}} \geq \frac{v_{2}^{*}}{\sqrt{\left|S_{2}^{*}\right|}} \ldots, \frac{v_{n}^{*}}{\sqrt{\left|S_{n}^{*}\right|}}$.
- We begin with a greedy allocation: $w \leftarrow \emptyset$ for all $i=1, \ldots, n$.
- If $\emptyset=S_{i}^{*} \cap\left(\bigcup_{j \in w} S_{j}^{*}\right)$, then $w \leftarrow w \cup\{i\}$. (If the products the player wants do not intersect with already-given products - we simply add her to the allocation).
- Payments: Player i pays the lowest value she could have reported and still win: $P_{i}=v_{j}^{*} \frac{\sqrt{\left|S_{i}^{*}\right|}}{\sqrt{\left|S_{j}^{*}\right|}}$, such that j is the smallest index for which: $S_{i}^{*} \cap S_{j}^{*} \neq \emptyset$ and for all $k \leq j, k \neq i$ we have $S_{k}^{*} \cap S_{j}^{*}=\emptyset$. In other words: If you don't stand in anybody's way - you can get your products for free. Otherwise, she will have to pay according to player j described, the one that she stood on his way.

The next few steps will eventually show that:

1. The algorithm for allocation is polynomial.
2. The algorithm gives an approximation rate of \sqrt{m}.
3. The mechanism is truthful.

Claim 3 The mechanism is monotone i.e if a player won by bidding $\left(S_{i}^{*}, v_{i}^{*}\right)$ he will still win by bidding $\left(S_{i}^{\prime}, v_{i}^{\prime}\right)$ s.t $v_{i}^{\prime} \geq v_{i}^{*}, S_{i}^{\prime} \subseteq S_{i}^{*}$.

Proof: Whether a player i wins S_{i}^{*} depends solely on his position in our sorting. The larger $\frac{v_{i}^{\prime}}{\sqrt{\left|S_{i}^{\prime}\right|}}$ the sooner our algorithm will encounter player i the sooner player i is encountered the more he wins.

Claim 4 The payment p_{i} is the critical value i.e the minimal value v_{i}^{\prime} for which $\left(S_{i}^{*}, v_{i} *\right)$ still gains S_{i}^{*}.

Proof: Player i wins as long as it shows ahead of j in the sorting i.e: $\frac{v_{i}^{*}}{\sqrt{\left|S_{i}^{*}\right|}} \geq \frac{v_{j}^{*}}{\sqrt{\left|S_{j}^{*}\right|}}$ and by simply dividing both sides of the inequality we get $v_{i}^{*} \geq v_{j}^{*} \frac{\sqrt{\left|S_{i}^{*}\right|}}{\sqrt{\left|S_{j}^{*}\right|}}$. The right side of the inequality is exactly equal to the payment p_{i}.

Theorem 5 There exists a mechanism, both truthful and polynomial, which approximate the optimal social welfare within multiplicative factor of \sqrt{m} i.e $\frac{O P T}{A L G} \leq \sqrt{m}$.

Proof: The algorithm is obviously polynomial so we begin by showing truthfulness. First note that for a lie $\left(S_{i}^{\prime}, v_{i}^{\prime}\right)$ to be profitable for player i then necessarily $S_{i}^{*} \subset S_{i}^{\prime}$. From monotonicity if $\left(S_{i}^{*}, v_{i}^{*}\right)$ wins then so does $\left(S_{i}^{*}, v_{i}^{\prime}\right)$ without augmenting player i payment. Conclusion: $\left(S_{i}^{*}, v_{i}^{*}\right) \succ\left(S_{i}^{\prime}, v_{i}^{\prime}\right)$ payment-wise. It's enough to show $\left(S_{i}^{*}, v_{i}^{*}\right) \succ\left(S_{i}^{*}, v_{i}^{\prime}\right)$. Indeed let a lie v_{i}^{\prime}.

- If v_{i}^{\prime} didn't win then the value for player i is 0 and the utility for player i is at most 0 .
- If v_{i}^{\prime} wins then the payment still is $v_{j}^{*} \frac{\sqrt{\left|S_{i}^{*}\right|}}{\sqrt{\left|S_{j}^{*}\right|}}$ the same payment.

Therefore we showed that in any case it is not profitable to lie.

Claim 6 The mechanism achieves approx. ratio \sqrt{m}.

Proof: First we show $\sum_{i \in w} v_{i}^{*} \geq \frac{1}{\sqrt{m}} \sum_{i \in O P T} v_{i}^{*}$. Denote $O P T_{i}=\{j \in O P T: j \geq$ $\left.i, S_{i}^{*} \cap S_{j}^{*} \neq \emptyset\right\}$. Notice if player i wins S_{i}^{*} both in $A L G$ and in $O P T$ i.e $i \in O P T \cap w$ then $i \in O P T_{i}$. We'll show:

1. For any player $i: O P T \subseteq \bigcup_{i \in w} O P T_{i}$.
2. For any $i \in w: \sum_{j \in O P T_{i}} v_{j}^{*} \leq \sqrt{m} v_{i}^{*}$.
(1) If $i \in w$ then obviously $S_{i}^{*} \cap S_{j}^{*} \neq \emptyset$ and $i \in O P T_{i}$. If $i \notin w$ then $i \in O P T_{j}$ s.t $j \in w$ and $j<i$ and $S_{i}^{*} \cap S_{j}^{*} \neq \emptyset$. Necessarily there exists a j like that otherwise we would have $i \in w$ which is a contradiction.
(2) First for any $j \in O P T_{i}$ we have:

$$
\begin{equation*}
v_{j}^{*} \leq v_{i}^{*} \frac{\sqrt{\left|S_{i}^{*}\right|}}{\sqrt{\left|S_{j}^{*}\right|}} \Rightarrow \sum_{j \in O P T_{i}} v_{j}^{*} \leq \frac{v_{i}^{*}}{\sqrt{\left|S_{i}^{*}\right|}} \sum_{j \in O P T_{i}} \sqrt{\left|S_{j}^{*}\right|} . \tag{1}
\end{equation*}
$$

And by Cauchy-Schwartz inequality:

$$
\begin{equation*}
\sum_{j \in O P T_{i}} v_{j}^{*} \leq \frac{v_{i}^{*}}{\sqrt{\left|S_{i}^{*}\right|}} \sqrt{\left|O P T_{i}\right|} \sqrt{\sum_{j \in O P T_{i}}\left|S_{j}^{*}\right|} \tag{2}
\end{equation*}
$$

Consider for any $i \in w$ there exists $\left|O P T_{i}\right| \leq\left|S_{i}^{*}\right|$. Why? Because for any player $j \in O P T_{i}$ his package S_{j}^{*} intersects S_{i}^{*} and does not intersect any other package in $O P T_{i}$ meaning we can assign any $j \in O P T_{i}$ a unique element $s \in S_{i}^{*} \cap S_{j}^{*}$ or in other words there is one-to-one
$f: O P T_{i} \rightarrow S_{i}^{*}$. And therefore we have:

$$
\begin{equation*}
\sum_{j \in O P T_{i}} v_{j}^{*} \leq \frac{v_{i}^{*}}{\sqrt{\left|O P T_{i}\right|}} \sqrt{\left|S_{i}^{*}\right|} \sqrt{\sum_{j}\left|S_{j}^{*}\right|} \leq \frac{v_{i}^{*}}{\sqrt{\left|O P T_{i}\right|}} \sqrt{\left|O P T_{i}\right|} \sqrt{\sum_{j}\left|S_{j}^{*}\right|} \leq v_{i}^{*} \sqrt{\sum_{j}\left|S_{j}^{*}\right|} \leq v_{i}^{*} \sqrt{m} \tag{3}
\end{equation*}
$$

Finally we have:

$$
\begin{equation*}
\sum_{j \in O P T} v_{j}^{*} \leq \sum_{i \in w} \sum_{j \in O P T_{i}} v_{j}^{*} \leq \sqrt{m} \sum_{i \in w} v_{i}^{*} . \tag{4}
\end{equation*}
$$

Which completes the proof.

3 Multi Unit Auctions

Consider m identical products and n players. For each player i define a valuation function: $v_{i}:\{0,1, \ldots, m\} \rightarrow \mathbb{R}^{+}$, where $v_{i}(k)$ is the value of k identical products for player i.

Standard Assumptions: Normalization: $v_{i}(0)=0$; Monotony: $v_{i}(k) \leq v_{i}(k+1)$ for all k.

Allocation: $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ where: $\sum_{i=1}^{n} x_{i} \leq m$ and each x_{i} is the number of elements allocated to player i.

Goal: Finding an allocation x that Maximizes the SW, defined as: $\sum_{i=1}^{n} v_{i}\left(x_{i}\right)$.
Recall that we are facing 3 challenges:

1. Representation.
2. Algorithm.
3. Strategy.

We will focus at number 1.

3.1 Representation

We will ignore the real number representation issue. For a large m, we would like to have a compact representation of the valuations. However, in the general case(i.e - valuations represents as a real number), it is impossible to compress all the valuations. There are 2 possible approaches to this problem:

1. Bidding languages.
2. Black Box - Query access model.

Bidding Languages

Using bidding languages it is possible to represent some of the valuations in a compact way. We will now describe several bidding languages, and the syntax and the semantics of each of them.

1. Single-minded

Syntax: For each player i we have a pair $\left(k_{i}^{*}, w_{i}^{*}\right)$.
Semantics: $v_{i}=\left\{\begin{array}{ll}w_{i}^{*} & \text { if } k \geq k^{*} \\ 0 & \text { if otherwise }\end{array}\right.$.

2. Step-function

Syntax: For each player i we have list of pairs $\left(k_{i 1}, w_{i 1}\right),\left(k_{i 2}, w_{i 2}\right), \ldots,\left(k_{i t}, w_{i t}\right)$.
Semantics: $v_{i}(k)=w_{i j}$ for $\max \mathrm{j}$ s.t $k \geq k_{i j}$.

Example:

Syntax: $(2,7),(5,23)$.
Semantics: 2 is the minimal k that receives value, hence: $V(0)=v(1)=0$.
For $2 \leq k<5$ we have: $v(2)=v(3)=v(4)=7$.
For $5 \leq k \quad$ we have: $v(5)=v(6)=\ldots=23$.

3. Piecewise linear (PWL)

Syntax: For each player i we have a sequence of pairs $\left(k_{i 1}, p_{i 1}\right),\left(k_{i 2}, p_{i 2}\right), \ldots,\left(k_{i t}, p_{i t}\right)$. Semantics: The value of player i is defined by the marginal values which are represented by the given sequence of pairs. Meaning, for each $1 \leq l \leq k$ define $u_{i l}=p_{i j}$ for $\min \mathrm{j}$ s.t $l \leq k_{i j}$. Then define: $v_{i}(k)=\sum_{l=1}^{k} u_{l}$.

Example:

Syntax: $(2,7),(5,23)$.
Semantics:
$v(0)=0$.
$v(1)=7$.
$v(2)=14$.
$v(3)=37$.
$v(4)=60$.
$v(5)=83$.

We want to examine the expressiveness of the languages:

1. First we notice that the step language includes the single-minded language: a singleminded valuation $\left(k_{i}^{*}, w_{i}^{*}\right)$ is also a step valuation with a single pair.
2. We'll examine the relation between step-function and PWL:

- We will convert a step valuation $\left(k_{i 1}, w_{i 1}\right),\left(k_{i 2}, w_{i 2}\right), \ldots,\left(k_{i t}, w_{i t}\right)$ to PWL valuation as follows:
For each step $\left(k_{i j}, w_{i j}\right)$ we will define: $\left(k_{i j}, w_{i j}-w_{i j-1}\right),\left(k_{i j+1}, 0\right)$.
- Converting a PWL valuation to a step valuation may increase substantially the number of values required for representation. For example, the PWL valuation $(m, 1)$ requires m step values in a step function: (k, k) for each k .

3.2 Black Box

In this approach, we have an interface we can use to query a "black box" regarding the valuations.

We'll consider our results as "good" results in one of the two following cases:

- Positive results for weak queries.
- Negative results for strong queries.

Query types:

- Value query: given k, want to find $v(k)$. This is a weak query.
- Demand query: given a sequence of product prices: $p_{1}, p_{2}, \ldots, p_{m}$, which subset $s \in S$ maximizes the utility of a specific player, defined as: $v(s)-\sum_{j \in S} p_{j}$. This is a strong query.

