Algorithmic Game Theory April 13, 2016

Lecture 7
Lecturer: Michal Feldman, Scribe: Oron Laor, Yotam Frank, Sofia Rovinsky, Noam Iluz

Combinatorial Auctions

We denote M as the set of different products that are up for sale, and m as the size of M.
There are n (strategic) players. Each player ¢ has a valuation function: v; : 2™ — R™.

Standard Assumptions: Normalization: v;()) = 0 ; Monotony: v;(S) < v;(T) for all
SCTCM.

Allocation: = = (x1,x2,...,2,) where: z; C M for all ¢, x; Nz; = 0 for all j # 4, and
Ui Ty — M.

Goal: Finding an allocation x that Maximizes the Social Welfare (SW), defined as:

Z?:l v (z).

To achieve our goal, we would have been happy to use VCG, but we might encounter, among
other issues, a complexity problem. For example, we would get 2™ values from each player.

The 3 main issues in AGT

1. Representation: we want to be able to represent all components of a game, in an
efficient way.

2. Strategic: we want to encourage the players to tell the truth.
3. Algorithmic: we want to be able to describe how to maximize SW (efficiently!).

We will now look at a case in which all those 3 issues work nicely (with VCG).

1 Unit Demand

We denote M as the set of different products that are up for sale, and m as the size of M.
There are n (strategic) players. The valuation function for each player is as follows: Each
player i has v;1,vi9, . .., V;m values for the products.
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For each S C M ,and for each player i we'll denote: v;(S) = maxjes{vi;}.

A Reminder of the VCG Mechanism

The mechanism gets {v;};, and then for S - an allocation that maximizes SW, and for
S =(S1,...,8)):

P; = maxjy Ej;éi vi(S7) — Zj;éi Uj(Sﬂ

So, here:

1. Representation is not problematic. Specifically, each player submits only m values,
not 2.

2. No Strategic problem as well.

3. What about the Algorithmic issue? this is in fact a maximal matching problem (!),
to which we know an algorithm that runs in polynomial time.

2 Single-Minded Bidders

*

e Each player ¢ will report: (S}, v}), while S} C M is a subset of products the player i
desires.

*5;, CS
e For all S C M: v;(S) = CHNR IS &
0 otherwise
In words: If a player gets a package that contains the subset of products she desires (S}k),

then she pays (v}). Otherwise - she pays nothing (since the player is only interested in one
item). Note that representation still isn’t a problem.

Claim 1 Maximizing SW for Single-Minded Bidders is a (very) hard problem: Given input
(Sf,vr) and an integer k, determining whether it’s possible to achieve k < SW is NP-Hard.
Proof: We will prove the above by a reduction from IS (Independent Set). Namely, Given
a graph G(V, E), and an integer k, we show that a solution for achieving k < SW gives us
a solution for IS:

For each vertex in the graph we create a player ¢ € V. We define the player’s package to be:
S¥ ={(i,7) € E}. Now we can notice that an allocation S is valid iff the set of "winners”:
{i: S C S;} is an Independent Set in the original graph. R

From the proof above, we can say: k < SW < IS > k. Because of that (elaboration
omitted), we can say that we can’t approximate the solution better than./m.
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Claim 2 The exist a truthful, polynomial mechanism, that gives an approximation rate

of\/m.

The Mechanism

e Each player i reports: (S}, v}).
v

e The players are sorted by: > B W
VISTE = V/I851 V1S5

e We begin with a greedy allocation: w < @ for alli =1,...,n.
o If 0 =57 N (Ujey S7)s then w < w U {i}. (If the products the player wants do not

intersect with already-given products - we simply add her to the allocation).

e Payments: Player ¢ pays the lowest value she could have reported and still win:

P = v} :?:, such that j is the smallest index for which: S7 N ST # () and for all
J

k < j,k # i we have Sy N ST = (). In other words: If you don’t stand in anybody’s
way - you can get your products for free. Otherwise, she will have to pay according
to player j described, the one that she stood on his way.

The next few steps will eventually show that:

1. The algorithm for allocation is polynomial.
2. The algorithm gives an approximation rate ofy/m.

3. The mechanism is truthful.

Claim 3 The mechanism is monotone i.e if a player won by bidding (SF,v}) he will still

1071
win by bidding (S;,v}) s.t v, > v}, SI C SF.

17 71

Proof:  Whether a player ¢ wins S; depends solely on his position in our sorting. The

/

\/z‘%ll the sooner our algorithm will encounter player ¢ the sooner player ¢ is encoun-

tered the more he wins. W

larger

Claim 4 The payment p; is the critical value i.e the minimal value v] for which (S}, v;*)
still gains S} .

* v¥
v J

Proof: Player ¢ wins as long as it shows ahead of j in the sorting i.e: i > and
’ i ! 8 ST = BT

by simply dividing both sides of the inequality we get vy > v¥ :iﬁt} The right side of the

<

inequality is exactly equal to the payment p;. B



Theorem 5 There exists a mechanism, both truthful and polynomial, which approrimate
the optimal social welfare within multiplicative factor of\/m i.e ﬁpg <\V/m .

Proof: The algorithm is obviously polynomial so we begin by showing truthfulness. First
note that for a lie (S,v)) to be profitable for player i then necessarily S} C S.. From
monotonicity if (S} ') without augmenting player i payment.

*,v’) wins then so does (S}, v}
') payment-wise. It’s enough to show (S}, v}) = (S}, v)).

Conclusion: (S7,v) = (Si,v

Z ? ’L 27 Z
Indeed let a lie v].

e If v/ didn’t win then the value for player i is 0 and the utility for player ¢ is at most 0.

_ Y 5
e If v/ wins then the payment still is vj*\/E
j

the same payment.

Therefore we showed that in any case it is not profitable to lie. B

Claim 6 The mechanism achieves approx. ratio/m.

Proof:  First we show ), vi > \/%ZZ‘EOPT,U’?(' Denote OPT; = {j € OPT : j >
i,57 NS5 # 0} . Notice if player i wins S} both in ALG and in OPT i.e i € OPT Nw then
i € OPT;. We'll show:

1. For any player i: OPT C |,

1ew

2. For any i € w: Y ;copr, v; <vmuy.

OPT;.

(1) If i € w then obviously S} NS¥ # () and i € OPT;. If i ¢ w then i € OPT; s.t j € w
and j < i and 57 NS # (). Necessarily there exists a j like that otherwise we would have
1 € w which is a contradiction.

(2) First for any j € OPT; we have:

SW:Z

|S*| JEOPT;

& < 2 IS 1

JEOPT;

ﬁ

And by Cauchy-Schwartz inequality:

> w< AVoPT|[ 3 15l ®
JEOPT; ‘ JEOPT;

Consider for any i € w there exists |OPT;| < |S}|. Why? Because for any player j € OPT;
his package ST intersects .S;" and does not intersect any other package in OPT; meaning we
can assign any j € OPT; a unique element s € 57 NS} or in other words there is one-to-one



f:OPT; — S}. And therefore we have:

je;T <W\ﬁ\/zi| Nz \/ﬁw\/ﬂwf

Finally we have:

DTS DD SITEN it o

jeOPT icw jEOPT; 1ew
Which completes the proof. B

3 Multi Unit Auctions

Consider m identical products and n players. For each player ¢ define a valuation function:
v; : {0,1,...,m} — RT, where v;(k) is the value of k identical products for player i.

Standard Assumptions: Normalization: v;(0) = 0 ; Monotony: v;(k) < v;(k + 1) for all
k.

Allocation: x = (z1,2,...,,) where: > " | x; < m and each x; is the number of elements
allocated to player 1.

Goal: Finding an allocation z that Maximizes the SW, defined as: Y " | v;(z;).

Recall that we are facing 3 challenges:

1. Representation.
2. Algorithm.

3. Strategy.

We will focus at number 1.

3.1 Representation

We will ignore the real number representation issue. For a large m, we would like to have
a compact representation of the valuations. However, in the general case(i.e - valuations
represents as a real number), it is impossible to compress all the valuations.

There are 2 possible approaches to this problem:

1. Bidding languages.

2. Black Box - Query access model.



Bidding Languages

Using bidding languages it is possible to represent some of the valuations in a compact
way. We will now describe several bidding languages, and the syntax and the semantics of
each of them.

1. Single-minded

Syntax: For each player ¢ we have a pair (k], w).
w if k> k*

Semantics: v; = { 0 if otherwise *

2. Step-function

Syntax: For each player i we have list of pairs (k;1, w;1), (ki2, wi2), . . ., (Kit, wit).
Semantics: v;(k) = w;; for max j s.t k > k.

Example:

Syntax: (2,7),(5,23).

Semantics: 2 is the minimal k that receives value, hence: V(0) = v(1) = 0.
For 2 < k <5 we have: v(2) =v(3) =v(4) =T.

For 5 <k we have: v(5) =v(6) =...=23.

3. Piecewise linear (PWL)

Syntax: For each player i we have a sequence of pairs (ki1, pi1), (ki2, pi2), - - -, (kit, Dit)-
Semantics: The value of player i is defined by the marginal values which are repre-
sented by the given sequence of pairs. Meaning, for each 1 <[ < k define u; = p;; for
min j s.t [ < k;;. Then define: v;(k) = Zle uj.

Example:

Syntax: (2,7),(5,23).

Semantics:
v(0) =

v(l) =T1.
v(2) = 14.
v(3) = 37.
v(4) = 60.
v(5) = 83.

We want to examine the expressiveness of the languages:



1. First we notice that the step language includes the single-minded language: a single-

minded valuation (k},w]) is also a step valuation with a single pair.
2. We’ll examine the relation between step-function and PWL:

- We will convert a step valuation (kj1,w;1), (ki2, wi2), . .., (kit, w;) to PWL valu-
ation as follows:
For each step (k;j, w;;) we will define: (kij, wij — wij—1), (kij+1,0).

- Converting a PWL valuation to a step valuation may increase substantially the
number of values required for representation. For example, the PWL valuation
(m, 1) requires m step values in a step function: (k, k) for each k.

3.2 Black Box

In this approach, we have an interface we can use to query a ”black box” regarding the
valuations.

WEe’ll consider our results as ”good” results in one of the two following cases:

- Positive results for weak queries.

- Negative results for strong queries.
Query types:

- Value query: given k, want to find v(k). This is a weak query.

- Demand query: given a sequence of product prices: pi,p2,...,Pm, which subset
s € S maximizes the utility of a specific player, defined as: v(s) — > jespj- Thisis a
strong query.
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