
Algorithmic Game Theory April 13, 2016

Lecture 7

Lecturer: Michal Feldman, Scribe: Oron Laor, Yotam Frank, Sofia Rovinsky, Noam Iluz

Combinatorial Auctions

We denote M as the set of different products that are up for sale, and m as the size of M .
There are n (strategic) players. Each player i has a valuation function: vi : 2m → R+.

Standard Assumptions: Normalization: vi(∅) = 0 ; Monotony: vi(S) ≤ vi(T) for all
S ⊆ T ⊆M .

Allocation: x = (x1, x2, . . . , xn) where: xi ⊆ M for all i, xi ∩ xj = ∅ for all j 6= i, and⋃
i xi = M .

Goal: Finding an allocation x that Maximizes the Social Welfare (SW), defined as:∑n
i=1 vi(xi).

To achieve our goal, we would have been happy to use VCG, but we might encounter, among
other issues, a complexity problem. For example, we would get 2m values from each player.

The 3 main issues in AGT

1. Representation: we want to be able to represent all components of a game, in an
efficient way.

2. Strategic: we want to encourage the players to tell the truth.

3. Algorithmic: we want to be able to describe how to maximize SW (efficiently!).

We will now look at a case in which all those 3 issues work nicely (with VCG).

1 Unit Demand

We denote M as the set of different products that are up for sale, and m as the size of M .
There are n (strategic) players. The valuation function for each player is as follows: Each
player i has vi1, vi2, . . . , vim values for the products.

7-1

For each S ⊂M ,and for each player i we’ll denote: vi(S) = maxj∈S{vij}.

A Reminder of the VCG Mechanism

The mechanism gets {vi}i, and then for S - an allocation that maximizes SW, and for
S′ = (S′1, . . . , S

′
n):

Pi = max′S
∑

j 6=i vi(S
′
i)−

∑
j 6=i vj(S

′
j).

So, here:

1. Representation is not problematic. Specifically, each player submits only m values,
not 2m.

2. No Strategic problem as well.

3. What about the Algorithmic issue? this is in fact a maximal matching problem (!),
to which we know an algorithm that runs in polynomial time.

2 Single-Minded Bidders

• Each player i will report: (S∗i , v
∗
i), while S∗i ⊆ M is a subset of products the player i

desires.

• For all S ⊆M : vi(S) =

{
v∗i Si ⊆ S,

0 otherwise
.

In words: If a player gets a package that contains the subset of products she desires (S∗I),
then she pays (v∗i). Otherwise - she pays nothing (since the player is only interested in one
item). Note that representation still isn’t a problem.

Claim 1 Maximizing SW for Single-Minded Bidders is a (very) hard problem: Given input
(S∗i , v

∗
i) and an integer k, determining whether it’s possible to achieve k ≤ SW is NP-Hard.

Proof: We will prove the above by a reduction from IS (Independent Set). Namely, Given
a graph G(V,E), and an integer k, we show that a solution for achieving k ≤ SW gives us
a solution for IS:

For each vertex in the graph we create a player i ∈ V . We define the player’s package to be:
S∗i = {(i, j) ∈ E}. Now we can notice that an allocation S is valid iff the set of ”winners”:
{i : S∗i ⊂ Si} is an Independent Set in the original graph.

From the proof above, we can say: k ≤ SW ⇔ IS ≥ k. Because of that (elaboration
omitted), we can say that we can’t approximate the solution better than

√
m.

7-2

Claim 2 The exist a truthful, polynomial mechanism, that gives an approximation rate
of
√
m.

The Mechanism

• Each player i reports: (S∗i , v
∗
i).

• The players are sorted by:
v∗1√
|S∗1 |
≥ v∗2√

|S∗2 |
. . . , v∗n√

|S∗n|
.

• We begin with a greedy allocation: w ← ∅ for all i = 1, . . . , n.

• If ∅ = S∗i ∩ (
⋃

j∈w S∗j), then w ← w ∪ {i}. (If the products the player wants do not
intersect with already-given products - we simply add her to the allocation).

• Payments: Player i pays the lowest value she could have reported and still win:

Pi = v∗j

√
|S∗i |√
|S∗j |

, such that j is the smallest index for which: S∗i ∩ S∗j 6= ∅ and for all

k ≤ j, k 6= i we have S∗k ∩ S∗j = ∅. In other words: If you don’t stand in anybody’s
way - you can get your products for free. Otherwise, she will have to pay according
to player j described, the one that she stood on his way.

The next few steps will eventually show that:

1. The algorithm for allocation is polynomial.

2. The algorithm gives an approximation rate of
√
m.

3. The mechanism is truthful.

Claim 3 The mechanism is monotone i.e if a player won by bidding (S∗i , v
∗
i) he will still

win by bidding (S′i, v
′
i) s.t v′i ≥ v∗i , S′i ⊆ S∗i .

Proof: Whether a player i wins S∗i depends solely on his position in our sorting. The

larger
v′i√
|S′i|

the sooner our algorithm will encounter player i the sooner player i is encoun-

tered the more he wins.

Claim 4 The payment pi is the critical value i.e the minimal value v′i for which (S∗i , vi∗)
still gains S∗i .

Proof: Player i wins as long as it shows ahead of j in the sorting i.e:
v∗i√
|S∗i |
≥ v∗j√

|S∗j |
and

by simply dividing both sides of the inequality we get v∗i ≥ v∗j

√
|S∗i |√
|S∗j |

. The right side of the

inequality is exactly equal to the payment pi.

7-3

Theorem 5 There exists a mechanism, both truthful and polynomial, which approximate
the optimal social welfare within multiplicative factor of

√
m i.e OPT

ALG ≤
√
m .

Proof: The algorithm is obviously polynomial so we begin by showing truthfulness. First
note that for a lie (S′i, v

′
i) to be profitable for player i then necessarily S∗i ⊂ S′i. From

monotonicity if (S∗i , v
∗
i) wins then so does (S∗i , v

′
i) without augmenting player i payment.

Conclusion: (S∗i , v
∗
i) � (S′i, v

′
i) payment-wise. It’s enough to show (S∗i , v

∗
i) � (S∗i , v

′
i).

Indeed let a lie v′i.

• If v′i didn’t win then the value for player i is 0 and the utility for player i is at most 0.

• If v′i wins then the payment still is v∗j

√
|S∗i |√
|S∗j |

the same payment.

Therefore we showed that in any case it is not profitable to lie.

Claim 6 The mechanism achieves approx. ratio
√
m.

Proof: First we show
∑

i∈w v∗i ≥ 1√
m

∑
i∈OPT v∗i . Denote OPTi = {j ∈ OPT : j ≥

i, S∗i ∩S∗j 6= ∅} . Notice if player i wins S∗i both in ALG and in OPT i.e i ∈ OPT ∩w then
i ∈ OPTi. We’ll show:

1. For any player i: OPT ⊆
⋃

i∈w OPTi.

2. For any i ∈ w:
∑

j∈OPTi
v∗j ≤

√
mv∗i .

(1) If i ∈ w then obviously S∗i ∩ S∗j 6= ∅ and i ∈ OPTi. If i 6∈ w then i ∈ OPTj s.t j ∈ w
and j < i and S∗i ∩ S∗j 6= ∅. Necessarily there exists a j like that otherwise we would have
i ∈ w which is a contradiction.
(2) First for any j ∈ OPTi we have:

v∗j ≤ v∗i

√
|S∗i |√
|S∗j |

⇒
∑

j∈OPTi

v∗j ≤
v∗i√
|S∗i |

∑
j∈OPTi

√
|S∗j |. (1)

And by Cauchy-Schwartz inequality:∑
j∈OPTi

v∗j ≤
v∗i√
|S∗i |
√
|OPTi|

√ ∑
j∈OPTi

|S∗j |. (2)

Consider for any i ∈ w there exists |OPTi| ≤ |S∗i |. Why? Because for any player j ∈ OPTi

his package S∗j intersects S∗i and does not intersect any other package in OPTi meaning we
can assign any j ∈ OPTi a unique element s ∈ S∗i ∩S∗j or in other words there is one-to-one

7-4

f : OPTi → S∗i . And therefore we have:∑
j∈OPTi

v∗j ≤
v∗i√
|OPTi|

√
|S∗i |
√∑

j

|S∗j | ≤
v∗i√
|OPTi|

√
|OPTi|

√∑
j

|S∗j | ≤ v∗i

√∑
j

|S∗j | ≤ v∗i
√
m.

(3)

Finally we have: ∑
j∈OPT

v∗j ≤
∑
i∈w

∑
j∈OPTi

v∗j ≤
√
m
∑
i∈w

v∗i . (4)

Which completes the proof.

3 Multi Unit Auctions

Consider m identical products and n players. For each player i define a valuation function:
vi : {0, 1, . . . ,m} → R+, where vi(k) is the value of k identical products for player i.

Standard Assumptions: Normalization: vi(0) = 0 ; Monotony: vi(k) ≤ vi(k + 1) for all
k.

Allocation: x = (x1, x2, . . . , xn) where:
∑n

i=1 xi ≤ m and each xi is the number of elements
allocated to player i.

Goal: Finding an allocation x that Maximizes the SW, defined as:
∑n

i=1 vi(xi).

Recall that we are facing 3 challenges:

1. Representation.

2. Algorithm.

3. Strategy.

We will focus at number 1.

3.1 Representation

We will ignore the real number representation issue. For a large m, we would like to have
a compact representation of the valuations. However, in the general case(i.e - valuations
represents as a real number), it is impossible to compress all the valuations.
There are 2 possible approaches to this problem:

1. Bidding languages.

2. Black Box - Query access model.

7-5

Bidding Languages

Using bidding languages it is possible to represent some of the valuations in a compact
way. We will now describe several bidding languages, and the syntax and the semantics of
each of them.

1. Single-minded

Syntax: For each player i we have a pair (k∗i , w
∗
i).

Semantics: vi =

{
w∗i if k ≥ k∗

0 if otherwise
.

2. Step-function

Syntax: For each player i we have list of pairs (ki1, wi1), (ki2, wi2), . . . , (kit, wit).
Semantics: vi(k) = wij for max j s.t k ≥ kij .

Example:

Syntax: (2, 7), (5, 23).
Semantics: 2 is the minimal k that receives value, hence: V (0) = v(1) = 0.
For 2 ≤ k < 5 we have: v(2) = v(3) = v(4) = 7.
For 5 ≤ k we have: v(5) = v(6) = . . . = 23.

3. Piecewise linear (PWL)

Syntax: For each player i we have a sequence of pairs (ki1, pi1), (ki2, pi2), . . . , (kit, pit).
Semantics: The value of player i is defined by the marginal values which are repre-
sented by the given sequence of pairs. Meaning, for each 1 ≤ l ≤ k define uil = pij for

min j s.t l ≤ kij . Then define: vi(k) =
∑k

l=1 ul.

Example:

Syntax: (2, 7), (5, 23).
Semantics:
v(0) = 0.
v(1) = 7.
v(2) = 14.
v(3) = 37.
v(4) = 60.
v(5) = 83.

We want to examine the expressiveness of the languages:

7-6

1. First we notice that the step language includes the single-minded language: a single-
minded valuation (k∗i , w

∗
i) is also a step valuation with a single pair.

2. We’ll examine the relation between step-function and PWL:

- We will convert a step valuation (ki1, wi1), (ki2, wi2), . . . , (kit, wit) to PWL valu-
ation as follows:
For each step (kij , wij) we will define: (kij , wij − wij−1), (kij+1, 0).

- Converting a PWL valuation to a step valuation may increase substantially the
number of values required for representation. For example, the PWL valuation
(m, 1) requires m step values in a step function: (k, k) for each k.

3.2 Black Box

In this approach, we have an interface we can use to query a ”black box” regarding the
valuations.

We’ll consider our results as ”good” results in one of the two following cases:

- Positive results for weak queries.

- Negative results for strong queries.

Query types:

- Value query: given k, want to find v(k). This is a weak query.

- Demand query: given a sequence of product prices: p1, p2, . . . , pm, which subset
s ∈ S maximizes the utility of a specific player, defined as: v(s)−

∑
j∈S pj . This is a

strong query.

7-7

