
Algorithmic Game Theory April 18, 2016

Lecture 8

Lecturer: Michal Feldman Scribe: P. Klein, R. Schuster, R. Yahel, T. Avni

1 Introduction

In previous lectures we introduced the VCG mechanism which is an incentive compatible
mechanism that allows us to maximize Social Welfare. We further introduced Combinatorial
Auctions model, in which we have n rational players, m items in the group of items M , and
for each player i, we have a valuation function

Vi : 2[M] → R≥0

We saw that in general, the computational complexity of the VCG mechanism may be
exponential in n and m, however, we saw special cases in which the maximizing problem of
SW by a DSIC mechanism is polynomial:

1. Additive Valuations - the value of a set of items is the sum of the values of all items
in the set, i.e. ∀S ⊆ M and for every player i, Vi(S) =

∑
j∈S

Vij . In this case, we can

maximize SW in polynomial time by a second price auction for each item in M .

2. Unit Demand - for each player i, and ∀S ⊆M : Vi(S) = max
j∈S

Vij . In this case, we saw

that finding the maximal SW is equivalent to the problem of Max Weight Matching
that can be solved in polynomial time in m and n.

3. Single Minded - for each player i there is a package S∗i and a value V ∗i so that

∀S ⊆M,Vi(S) =

{
V ∗i S∗i ⊆ S
0 o.w.

We saw that there is a DSIC polynomial mechanism that guarantees an approximation
of
√
m of the maximal SW.

We then introduced Multi Unit Auctions, i.e. auction of identical items in which every
player has a value for k identical values, for each k ∈ {1, 2, . . .m}. In this kind of auctions
we demand that the mechanisms we use will be polynomial in n, logm and t, where t is the
number of bits required to represent the maximum value of a player for the item. One of
the challenges regarding Multi Unit Auctions is the representation problem of the valuation

8-1

functions of the players, that may be exponential in logm. One of the approaches to this
challenge, which we already mentioned, is Bidding Languages that allow us to represent
some of the valuation functions in a compact form. A second approach on which we discuss
today is Oracle Access.

2 Oracle Access

An Oracle is a “black-box” object, that is capable of replying on a certain set of queries.

2.1 Types Of Oracles

Value Query

Value queries take as input a set of items S ⊆M and output the value of this set, i.e. Vi(S)
is given by a single oracle query.

value query
S ⊆M︸ ︷︷ ︸

set S as input

V (S)︸ ︷︷ ︸
value of S as output

Demand Query

Definition 1 Given prices P = (p1, . . . , pm) for the items in M , the Demand of player i

under pricing P is Di(P) = arg max
S⊆M

{Vi(S)−
∑
j∈S

pj}, i.e. a set S that maximizes i’s utility.

Demand Query oracle returns the Demand of a player i, given a pricing vector.

demand query
P = (p1, . . . , pm)︸ ︷︷ ︸

a vector pricing as input

S ∈ Di(P)︸ ︷︷ ︸
a maximizing set S as output

A Demand Oracle is stronger than Value Oracle since any query obtained by Value Oracle
can be obtained by Demand Oracle using polynomial number of queries.

Claim 2 For any valuation function V , given access to a Demand Oracle, it is possible to
compute V (s) using a polynomial amount of queries in m.
Remark This claim holds for all Combinatorial Auctions and not only for Multi Unit
Auctions, so we allow our algorithms to be polynomial in m.

8-2

Proof:

1. Computation of the Value of a Single Item
Suppose we wish to compute a value of a single item j ∈M of a player i, i.e. Vi({j})
using Demand Oracle. The following algorithm allows us to do so: For achieving the
value of Vi({j}) we may create a pricing vector P as follows:
∀k 6= j set pk = ∞ and perform binary search on pj ∈ [0, 2t]. We thus find the
threshold pj above which Di(P) is empty, and below it Di(P) is exactly {j}. This
would be Vi(j)

2. Computation of a Marginal Value of a Item

Definition 3 The Marginal Value of a item j given a set of items S of player i is
Vi(j|S) = Vi({j} ∪ S) − Vi(S), i.e. it is the value change in value for the player i in
adding j to the set S.

Suppose we wish to query for Vi(j|S) with Demand Oracle. We compute Vi(j|s)
similarly to Vi({j}).
We set: ∀j′ ∈ S : pj′ = 0,
∀j′′ /∈ S, j′′ 6= j : pj′′ =∞.
We now perform binary search for the threshold pj above which j is included in Di(P).

3. Computing the value of S
Let S be {i1, i2, . . . , ik}. We observe that

Vi(S) = Vi(i1) + Vi(i2|{i1}) + Vi(i3|{i1, i2}) + ...

Since Vi(j|S) = Vi({j}∪S)−Vi(S), we get a telescopic series equal to Vi(S), and thus
prove the claim.

2.2 Identical Items

Input: valuations of the players V1, ..., Vn.
Output: Allocations m1, ...mn

s.t.
∑

imi ≤ m (i.e. allocation of maximum m = |M | items).

Dynamic Programming

We define S(i, k) to be the maximal Social Welfare for an allocation of k items for the first
i players. We define S(0, k) = S(i, 0) = 0 for all k and all i.

8-3

i


0 0 ... 0

0 ...
...

... S(i, k)
...

0 ...︸ ︷︷ ︸
k

The recursive formulation would be

S(i, k) = max
0≤j≤k

{Vi(j) + S(i− 1, k − j)}

Maximal SW would be S(n,m).

Reconstructing the allocation:

k = m
for i = n, ..., 1 :

let mi = j s.t. s(i, k) = vi(j) + S(i− 1, k − j)
k = k −mi

Running time: O(nm2) - nm values of S(i, k), each value requires up to m queries.

Remark The algorithm, as brought here, does not meet the requires complexity, since it
is polynomial in m but not in logm. However, it does have some interesting properties:

1. Applying some manipulations, we may achieve a Fully Polynomial Time Approxima-
tion Scheme (FPTAS) to achieve approximation of (1− ε)OPT . The algorithm would
be polynomial in the output and in 1

ε .

2. We will soon use a variation of this algorithm.

Descending Marginal Value Valuations

Definition 4 We say that the players have valuations with Descending Marginal Value if

∀i, k : vi(k + 1)− vi(k) ≤ vi(k)− vi(k − 1)

Definition 5 Market Equilibrium is a price p and an allocation m1, ...,mn s.t.

•
∑
i

mi = M i.e. all items are allocated,

8-4

• ∀i : Vi(mi)− Vi(mi−1) ≥ p > Vi(mi+1)− Vi(mi) (*)

From (*) follows that for every player i:

∀k : Vi(mi)−mi(p)︸ ︷︷ ︸
utility of player i for mi items

≥ Vi(k)− kp︸ ︷︷ ︸
utility of player i for k items

i.e. each player got exactly the number of items that maximizes its utility.

Theorem 6 Market equilibrium always maximizes SW.

Proof: For each general allocation (k1, . . . , kn) s.t.
∑
i

ki ≤ m we have that for each

player i
vi(mi)−mip ≥ vi(ki)− kip

If we sum over all i

∑
i

(Vi(mi)−mip) ≥
∑
i

(Vi(ki)− kip)

⇓∑
i

Vi(mi)− mp︸︷︷︸∑
i

mi = m

≥
∑
i

Vi(ki)− mp︸︷︷︸∑
i

ki ≤ k

⇓∑
i

Vi(mi)︸ ︷︷ ︸
SW in Market Eq

≥
∑
i

Vi(ki)︸ ︷︷ ︸
SW under general allocation

⇒SW under ME is at least as good as SW under any other allocation.

Corollary 7 It is enough to find a ME in order to maximize SW. Hence, it is enough to
find a polynomial algorithm to find ME.

Remark Given a price p, it is possible to use binary-search, in order to find mi since
the marginal value of the players decreases. Thus, we present the polynomial algorithm for
finding Market Equilibrium.

8-5

Algorithm

Note: for simplicity we assume that the values of a different number of items are different
for each player, and the values are different between different players, i.e. ∀i, k, i′, k′ :
if (i, k) 6= (i′, k′) then Vi(k) 6= Vi′(k

′).

1. Perform binary search on p ∈ [0,max
i
Vi(1)] for t rounds (where t is the number of bits

required to represent max
i
Vi(1)):

(a) Given p, for each player 1 ≤ i ≤ n perform binary search on {0, . . . ,m} to find
mi such that Vi(mi)− Vi(mi − 1) ≥ p > Vi(mi + 1)− Vi(mi).

(b) If
n∑
i=1

mi ≥ m, then p is too low; if
n∑
i=1

mi ≤ m, then p is too high; otherwise, p

was found.

2. Return (m1, . . . ,mn).

Running Time

The algorithm is polynomial in n, logm and t.

Corollary 8 For identical items with a decreasing marginal value, there exists, as shown,
a polynomial algorithm in n, logm and t that maximizes SW.

Theorem 9 There is not a polynomial algorithm in n, logm and t that maximizes SW for
the general case of Multi Unit Auction (without assumptions such as decreasing marginal
values). This holds even for two players games.

Proof: Assume we have two players with two valuations V1 and V2, and that there exists
a polynomial time algorithm that returns the allocation (m1,m2). Assume that for each
query k, it holds that V1(k) = k and V2(k) = k. Since the algorithm is polynomial in logm,
it made at most 2m− 3 queries.

Number of Items V1 V2
1 1 1
2 2 2
...

...
...

m m m


3 values the algorithm does

not query for ⇒
there is a player with two

values unknown to the algorithm

Hence, there exists a player, without loss of generality V1, for which the algorithm does not
know two of its values. Therefore, there exists a value z 6= m1, that the algorithm did not

8-6

query for V1(z). We observe in a slightly different input for that algorithm, V ′1 , V
′
2 , which

are identical to V1 and V2 except for the fact that V ′1(z) = z + 1. The algorithm on V ′1 ,V ′2
will return (m1,m2), since it is a deterministic algorithm and it would not query for V ′1(z).
Hence, it return SW (m1,m2) = m, while OPT = m+ 1 under the allocation of (z,m− z).

Suppose we look of an approximating algorithm for SW. If we used the VCG mechanism
and changed the allocation so that we only get an approximation of SW it would lose its
incentive compatibility.

2.3 MIR (Maximum in Range) Methodology

In this section, we will introduce the MIR methodology, which uses VCG’s mechanism on a
restricted range/space of allocations. In particular, we will present a MIR algorithm which
reaches a 2-approximation to OPT . For simplicity, assume that the number of items m, is
a multiplication of n2.

OPT ′ ≥ OPT
2

OPT = (m∗1, . . . ,m
∗
n)

Figure 1: The allocation space - all (m1, . . . ,mn) for which
∑

imi = m

As depicted in Figure 1, our algorithm restricts the allocation space into a smaller one, in
which there is an allocation OPT ′ that gives a SW of at least OPT

2 .

Algorithm

1. Divide the m items to n2 packages, each has the size of m
n2 items.

8-7

2. Use VCG’s mechanism on the new set of items which is the n2 packages, using the
dynamic programming algorithm shown at the previously on this lecture.

Running Time

Running time will be O(n5).
Remark The mechanism is still DSIC, since we use the VCG mechanism, though on a
smaller range of the allocation space.

Claim 10 There exists an allocation in the restricted allocations space of the n2 packages,
which yields a SW of at least OPT

2 .

Proof: Denote the optimal allocation M = (m∗1, ...,m
∗
n).

Let i be the player that maximizes m∗i , i.e. receives more items than any other player
(i = arg max

j
m∗j):

1. Case 1:

Vi(m
∗
i) ≥

∑
i 6=j

Vj(m
∗
j)

i.e. at least half of the optimal SW is obtained from player i. Hence, giving player i all
items yields to the desired approximation. This allocation is in fact in our restricted
space

2. Case 2:

Vi(m
∗
i) <

∑
i 6=j

Vj(m
∗
j)

Since all m items are allocated and m∗i = max
j
m∗j , we have that m∗i ≥ m

n . We can now

spread the m∗i items of player i among the other n − 1 player, in order to complete
the number of items of each player to a multiple of m

n2 . We can do it since m∗i ≥ m
n ,

there are n− 1 players besides player i, and each one of them needs at most m
n2 items.

This allocation is in fact in our restricted allocation space, and since at least half of
the SW is derived from all the players that are not i, we get an approximation of
OPT
2 .

Theorem 11 Given a Black-Box model (not necessarily a Value or Demand queries), there
is no MIR algorithm that reaches a better approximation than 2-approximation in polynomial
time in n and logm. This holds even for two players games.

8-8

Proof: We will use the known claim, that given 2-players game, OPT cannot be obtained
in polynomial time. Let A be a MIR algorithm that reaches a better approximation than
2-approximation. If the range of allocations is full, i.e. includes all couples (m1,m−m1) for
all m1 ∈ {0, . . . ,m}, we get OPT; which contradicts the above mentioned claim. Otherwise,
there is at least one missing allocation in our range, let as designate it as (m1,m−m1).

restricted space

(m1,m − m1)

Figure 2: allocation space

Let us observe at the next input:

V1(k) =

{
1 if k ≥ m
0 o.w.

V2(k) =

{
1 if k ≥ m−m1

0 o.w.

Therefore, OPT = 2 by (m1,m − m1), but the optimal allocation in the restricted
allocations-space yields SW = 1.

Remark MIR mechanisms that are DSIC define the range independently from the input
to the algorithm, otherwise the would have lost their incentive compatibility, since players
could manipulate the mechanism.

8-9

