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1 VCG mechanism

We defined VCG mechanism in the following way:

• Allocation rule: ω∗ = argmaxω∈Ω
∑n

i=1 bi(ω)

• Payment rule: pi(bi) = maxω∈Ω
∑

i 6=j bi(ω)−
∑

i 6=j bi(ω
∗)

Remark VCG is a family of mechanisms. The mechanism we defined is called ”Clarke-
Pivot” mechanism, and it is a private case of the VCG mechanisms.

The VCG mechanism is a DISC mechanism that maximizes the social welfare (SW). How-
ever, finding an allocation that maximizes argmaxω∈Ω

∑n
i=1 bi(ω) might be a computation-

ally hard problem (we saw that for single-minded bidders maximizing the social welfare
is a NP-Hard problem). Last lecture we saw the maximum in range (MIR) methodology,
which uses VCGs mechanism on a restricted range of allocations. This method improves
the computational complexity of the allocation rule, and reaches a 2-approximation to the
maximal social welfare. We saw that this is the best approximation we can get by using
the MIR method.

2 Non-truthful Mechanisms

In the real world the mechanisms are not necessarily truthful (for example, we saw that
the generalized second price auction used by Google for sponsored search is not a truthful
mechanism). We will analyze the price of anarchy caused by non-truthful bidding, i.e we
will find the largest relation between the SW in some Nash equilibrium and the optimal
SW.

2.1 Simultaneous second price auction (S2A)

Lets consider the following auction:
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• A set M of m goods.

• A set N of n players.

• Each player i has a valuation function Vi = 2M → R

VCG is an inefficient mechanism for this auction. We will suggest the following simple
mechanism:

Definition 1 Simultaneous second price auction (S2A):

• Every player i submits a bid for each good j separately (bi,j). The mechanism gets a
vector of bids from each player i - (bi,1, bi,2...bi,m).

• The mechanism applies the second price allocation and payment rules for each sepa-
rately.

Note that if the valuation function of the players are additive, the SIA mechanism is ex-
actly the VCG mechanism, and it is therefor a DISC mechanism that maximizes the SW.
Otherwise, the mechanism is not necessarily truthful. Lets consider the following case:

Example 1 • There is a single good p and two players (player1 and player2).

• We will denote Vi to be player i’s valuation function. V1(p) = 1, V2(p) = ε, 0 < ε < 1.

Lets view the case where player1 bids 0, player2 bids 1. This is a Nash equilibrium:

1. Player 2 wins and pays 0. In this case the utility of player 2 is maximized, and he
can’t gain anything by changing his bid.

2. Player1 loses and his utility is 0. Player 1 can win only if he would change his bid to
be higher than 1. However, in this case the his utility would be lower than 0, and he
won’t gain anything from changing his bid.

The SW in this case is ε. In the optimal case, player1 bids 1 and player2 bids 0, and the
SW is 1. We get that the price of anarchy is : PoA = SWOPT /SWNE = 1/ε. Since ε can
be as small as we want, we get that the price of anarchy is as big as we want it to be.

The above example seems unrealistic - player1’s bid is much higher than his valuation for
p, which is nearly 0. We will make the following assumptions:

1. No over bidding (NOB): Lets denote Si(b) to be the set of goods that player i receives
with the bidding vector b. A vector b holds the NOB property if for every player i:∑

j∈Si(b)
bi,j ≤ Vi(Si(b)).
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2. Sub-modular valuations: A valuation function Vi is sub-modular if for every S ⊆ T ⊆
M and for every j : Vi(T ∪ {j}) − Vi(T ) ≤ Vi(S ∪ {j}) − Vi(S) (player i gains more
from receiving j in addition to the set S, than it does from receiving j in addition to
T ).

Note that the unit demand function is sub modular.

Example 2 Lets consider the following auction:

• There are two goods , X and Y , and two players (player1 and player2).

• The valuation functions are defined as follows:

– V1(X) = 2, V1(Y ) = 1

– V2(Y ) = 2, V2(X) = 1

If X is allocated to player1 and Y is allocated to player2 we get SW = 4, this is the optimal
SW.

Lets view the scenario where player 1 bids b1(X) = 0, b1(Y ) = 1, and player2 bids
b2(X) = 1, b2(Y ) = 0 (note that this bidding vector holds the NOB property). We will see
that this case is a Nash equilibrium:

• Player1 pays 0 for Y (since player2 bid is 0), and his utility is 1

• To win X , player1 needs to change his bid for X to be higher than 1, and is payment
for X would be 1. V1({X,Y }) = max(V1(X), V1(Y )) = 2 , his utility would be 1, and
he won’t gain anything from this change.

• Since player1 gets Y for free, he won’t gain anything from changing his bid for Y .

• The same analysis applies for player2.

The SW in this case is 2, and so we get that PoA = SWOPT /SWNE = 4/2 = 2.

We will see that the PoA in example2 is the worst case for any scenario which holds the
NOB and sub-modular properties.

Theorem 2 Let vi be a sub-modular valuation function of the ith player, and b an equilib-
rium of the SIA under the NOB assumption. Than SW (b) =

∑
i vi(si(b)) ≥

SW ∗(b)
2 where

SW ∗(b) is the optimal SW .

We will first prove the theorem for unit demand valuation as a warm up:
Proof: Let b be an equilibrium biding profile (under NOB assumption), and let S∗ be an
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optimal allocation: OPT =
∑n

i=1 vi(s
∗
i ). Let j∗(i) be the product given to the ith player in

OPT (Without loss of generality we can assume each player receives one product).
Consider the following strategy for the ith player:

b∗ij =

{
vij j = j∗(i)

0 O.W.

Since b is equilibrium, no player can increase his profit by changing strategy. Therefore:

vi(si(b))−
∑
j∈si(b)

pj(b) ≥ vi(si(b∗i , b−i))−
∑

j∈si(b∗i ,b−i)

pj(b
∗
i , b−i)

And since pj is non-negative, we can write:

vi(si(b)) ≥ vi(si(b∗i , b−i))−
∑

j∈si(b∗i ,b−i)

pj(b
∗
i , b−i)

Notice that if vij ≥ max
k 6=i

bkj than the ith player gets the jth product in the (b∗i , b−i) profile

in price max
k 6=i

bkj . Otherwise, vij −max
k 6=i

bkj < 0 and the ith player is not getting the product

and not paying anything. Therefore, in any case the contribute of the j∗(i) product to
vi(si(b

∗
i , b−i))−

∑
j∈si(b∗i ,b−i)

pj(b
∗
i , b−i) is at least vij −max

k 6=i
bkj ≥ vij −max

k
bkj .

Overall we get:
vi(si(b)) ≥ vij∗(i) −max

k
bkj

And the sum over all players:

(1)
n∑
i=1

vi(si(b)) ≥
n∑
i=1

vij∗(i) −max
k

bkj∗(i)

Notice the following:
n∑
i=1

max
k

bkj∗(i) ≤
n∑
i=1

∑
j∈si(b)

max
k

bkj

And since we know that the ith player receives the jth product, and under the NOB as-
sumption we get:

=
n∑
i=1

∑
j∈si(b)

bij ≤
n∑
i=1

vi(si(b))

We can now replace it back in equation (1):

n∑
i=1

vi(si(b))︸ ︷︷ ︸
SW@NE

≥ vij∗(i)︸ ︷︷ ︸
OPT

−
n∑
i=1

vi(si(b))︸ ︷︷ ︸
SW@NE

And therefore SW@NE ≥ OPT
2
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Lemma 3 Let ui be a submodular function, such there are additive functions - a1
i , ..a

l
i, a

r
i ,

such that, for each set S:

vi(S) = maxrl=1{
∑
j∈S

alij}

where
alij = (ali1, ..., a

l
im)

Proof: Lets view the m! additive functions of every possible permutation. For every
permutation:

π : aπij = vi(S
π
j ∪ {j})− vi(Sπj )

We will take a look at the set S. We will fix a permutation π (meaning, some additive
function), Then we’ll sort the members of S by their order in permutation π:

aπi (S) =
∑
j∈S

aπij =
∑
j∈S

(vi(S
π
j ∪{j})−vi(Sπj )) ≤

∑
j∈S

(vi(1, ..., j−1)) = vi(S)−vi(∅) = vi(S) = vi(S)

Every permutation that it’s prefix contains exactly the memebers of the set S, will give us
the equailty, therefore such π exists.

Now We’ll proof the theorem PoA ≤ 2 for submodular functions. Let b be a nash
equilibrium with NOB. Let S∗ be an optimal allocation, and let S∗i be the alloction of
player i in OPT. By the lemma, for every player ith, there exists an additive function a∗i
such that vi(S

∗
i ) =

∑
j∈S∗

i
(a∗ij).

We’ll use the hypothetical deviation:

b∗ij =

{
a∗ij j ∈ S∗i
0 O.W.

from the equilibrium we get that:

vi(si(b))−
∑
j∈si(b)

pj(b) ≥ vi(si(b∗i , b−i))−
∑

j∈si(b∗i ,b−i)

pj(b
∗
i , b−i)

And since pj is non-negative, we can write:

vi(si(b)) ≥ vi(si(b∗i , b−i))−
∑

j∈si(b∗i ,b−i)

pj(b
∗
i , b−i)

For every j ∈ S∗i , if aij ≥ max
k 6=i

bkj , the ith gets the jth product and pays max
k 6=i

bkj .

Otherwise, aij < max
k 6=i

bkj and then the ith player gets nothing.

Each product j ∈ S∗i contibutes at least a∗ij −max
k 6=i

bkj ≥ a∗ij −
n

max
k=1

bkj
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Overall we get:

vi(si(b
∗
i , b−i))−

∑
j∈si(b∗i ,b−i)

pj(b
∗
i , b−i) ≥

∑
j∈s∗i

(a∗ij −
n

max
k=1

bkj)

Overall we get that for every i:

vi(si(b)) ≥
∑

j∈s∗i a∗ij(i)

− n
max
k=1

bkj

And the sum over all players:

n∑
i=1

vi(si(b)) ≥
n∑
i=1

aij∗(i) −max
k

bkj(i)

According To The Lemma

vi(S) ≥
∑
j∈S

a∗ij

so we get:

(1)

n∑
i=1

vi(si(b))︸ ︷︷ ︸
SW@NE

≥
n∑
i=1

vi(s
∗
i )︸ ︷︷ ︸

OPT

−
n∑
i=1

∑
j∈S∗

i

n
max
k=1

bkj︸ ︷︷ ︸
≤SW@NE

Since each product is given to one player:

n∑
i=1

∑
j∈S∗

i

n
max
k=1

bkj ≤
n∑
i=1

∑
j∈Si(b)

n
max
k=1

bkj

And since we know that the ith player receives the jth product, and under the NOB as-
sumption we get:

=

n∑
i=1

∑
j∈si(b)

bij ≤
n∑
i=1

vi(si(b))

We can now replace it back in equation (1):

n∑
i=1

vi(si(b))︸ ︷︷ ︸
SW@NE

≥ vij∗(i)︸ ︷︷ ︸
OPT

−
n∑
i=1

vi(si(b))︸ ︷︷ ︸
SW@NE

And therefore SW@NE ≥ OPT
2
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